Supporting Information

Charge-enriched RuO₂ nanoparticles decorating TiO₂ with Ti defects to promote

oxygen evolution reaction in acidic media

Ye Wang,^a Yixin Hao,^a Luqi Wang,^a Chunsheng Li,^{bc} Jianwei Ren,^d Yan Sun,^{bc} Feng Hu^{*a}, Linlin Li^a, and Shengjie Peng^{*a}

^aCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: pengshengjie@nuaa.edu.cn

^bSchool of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009 (P. R. China)

^cKey Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009 (P. R. China)

^dDepartment of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa.

TOF calculation

Turnover frequency (TOF) was calculated via the following formula according to previous reports.

TOF per site = $\frac{\# \text{ Total Oxygen Turn Over/cm}^2 \text{ geometric area}}{\# \text{ Surface Sites/cm}^2 \text{ geometric area}}$

The total number of oxygens turnovers was calculated from the current density using the following

equation:

$$\#O_{2} = \left(j\frac{mA}{cm^{2}}\right)\left(\frac{1C \text{ s}^{-1}}{1000 \text{ mA}}\right)\left(\frac{1 \text{ mol s}^{-1}}{1000 \text{ mA}}\right)\left(\frac{1 \text{ mol }O_{2}}{4 \text{ mol e}^{-1}}\right)\left(\frac{6.022 \times 10^{23}O_{2} \text{ molecules}}{1 \text{ mol }O_{2}}\right) = J \times 1.56 \times 10^{15} \frac{O_{2}/\text{s}}{\text{cm}^{2}} \text{per}\frac{\text{mA}}{\text{cm}^{2}}$$

The Ru content of d-TiO₂/RuO₂ is determined by the ICP. The mass loading on the electrode is ~0.30 mg cm⁻². Thus, n is calculated as:

n(d - TiO2/RuO2) =
$$\frac{2.42\% \times 0.30 \frac{\text{mg}}{\text{cm}^2}}{58.93 \frac{\text{g}}{\text{mol}}} = 1.23 \times 10^{-7} \text{ mol/cm}^2$$

 $N^{d-TiO2/RuO2}_{active} = 6.022 \times 10^{23} \text{mol}^{-1} \times 1.23 \times 10^{-7} \text{mol}/\text{cm}^2 = 7.407 \times 10^{16} \text{ atoms/cm}^2$

$$TOF = \frac{|J| \times 1.56 \times 10^{15} \frac{O_2/s}{cm^2} per \frac{mA}{cm^2}}{N^{d-TiO2/RuO2}}$$

Mass activity calculation

The mass activity ($j_{\text{mass activity}}$) of the d-TiO₂/RuO₂, TiO₂/RuO₂ and RuO₂ catalysts was determined using the following formula:

$$j_{mass\ activity} = \frac{j_{geo} \times A_{geo}}{m_{Ru}}$$

where m_{Ru} is the calculated Ru mass loaded onto carbon paper based on the results of ICP-OES analysis, A_{geo} is the geometric area and j_{geo} is the geometric current density.

Fig. S1. XRD patterns of precursor powders synthesized with and without glycerol, respectively.

Fig. S2. SEM images of (a) TiO_2/RuO_2 and (b) TiO_2 , respectively.

Fig. S3. SEM images of precursor powders synthesized (a) with and (b) without glycerol, respectively.

Fig. S4. (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of d-TiO₂/RuO₂ and TiO₂/RuO₂, respectively.

Fig. S5. XRD patterns of d-TiO₂ and TiO₂, respectively.

Fig. S6. Raman spectra of d-TiO₂ and TiO₂, respectively.

Fig. S7. EPR spectra of d-TiO₂ and TiO₂, respectively.

Fig. S8. The ratios of Ti and O atoms of TiO_2 and $d-TiO_2$ calculated by X-ray fluorescence spectrometer (XRF) and inductively coupled plasma (ICP) analysis, respectively.

Fig. S9. FTIR spectra of d-TiO₂/RuO₂-pre and TiO₂/RuO₂-pre, respectively.

Fig. S10. Raman spectra of d-TiO₂/RuO₂-pre and TiO₂/RuO₂-pre, respectively.

Fig. S11. TG curves of precursor powders synthesized with and without glycerol, respectively.

Fig. S12. Fitted O1s XPS signal of (a) TiO_2/RuO_2 and (b) d- TiO_2/RuO_2 , respectively.

Fig. S13. Ti 3p region for d-TiO₂ and d-TiO₂, respectively.

Fig. S14. XPS survey spectra of (a) TiO_2/RuO_2 and (b) d- TiO_2/RuO_2 , respectively.

Fig. S15. OER LSV polarization curves normalized by Ru loading of $d-TiO_2/RuO_2$, TiO_2/RuO_2 , and RuO₂, respectively.

Fig. S16. SEM images of (a) d-TiO₂/RuO₂-1, d-TiO₂/RuO₂-3 and (c) d-TiO₂/RuO₂-7, respectively. All of the samples are nanoflower structures, indicated that the effect of loading on catalyst morphology is negligible.

Fig. S17. (a) OER LSV polarization curves of d-TiO₂/RuO₂-1, d-TiO₂/RuO₂-3, d-TiO₂/RuO₂-5 and d-TiO₂/RuO₂-7, respectively. (b) OER LSV polarization curves normalized by Ru loading of d-TiO₂/RuO₂-1, d-TiO₂/RuO₂-3, d-TiO₂/RuO₂-5 and d-TiO₂/RuO₂-7, respectively.

The d-TiO₂/RuO₂-5 exhibits a low overpotential of only 226 mV to achieve the current density of 10 mA cm⁻², which is much better than d-TiO₂/RuO₂-1 (339 mV), d-TiO₂/RuO₂-3 (256 mV) and d-TiO₂/RuO₂-7 (245 mV). It is also observed that d-TiO₂/RuO₂-5 also exhibits the best OER activity, even eliminating the effect of loading by mass normalization.

Fig. S18. Cyclic voltammograms of different samples from 20 to 100 mV s⁻¹ between 0.995 and 1.095 V, respectively.

Fig. S19. The ECSA of d-TiO₂/RuO₂, TiO₂/RuO₂, RuO₂ and d-TiO₂, respectively.

Fig. S20. OER LSV polarization curves normalized by ECSA of $d-TiO_2/RuO_2$, TiO_2/RuO_2 , and $d-TiO_2$, respectively.

Fig. S21. SEM image of d-TiO₂/RuO₂ after OER at 10 mA cm⁻² for 10h.

The $d-TiO_2/RuO_2$ maintained the original morphology. Since carbon black is added as a conductive agent in the preparation of the catalyst for electrochemical testing, a lot of carbon black can be observed on the nanoflowers.

Fig. S22. TEM image of d-TiO₂/RuO₂ after OER at 10 mA cm⁻² for 10h.

TEM shows the clear interface contact between ${\rm TiO}_2$ and ${\rm RuO}_2$ after the stability measurement.

Fig. S23. XRD of d-TiO₂/RuO₂ after OER at 10 mA cm⁻² for 10h.

The XRD peaks of $d-TiO_2/RuO_2$ correspond well with both phases of anatase TiO₂ (JCPDS NO.21-1272) and rutile RuO₂ (JCPDS NO.43-1027), which indicated that there is no phase change for d-TiO₂/RuO₂.

Fig. S24. The chronopotentiometry measurement of RuO_2 at 10 mA cm⁻².

Fig. S25. In operando EIS of $d-TiO_2/RuO_2$, TiO_2/RuO_2 , and RuO_2 collected under different polarization potentials (the applied potential is referenced to RHE). The corresponding Nyquist plots for (a) $d-TiO_2/RuO_2$, (b) TiO_2/RuO_2 , and (c) RuO_2 , respectively.

Fig. S26. EIS curves for $d-TiO_2/RuO_2$ and TiO_2/RuO_2 . The inset shows equivalent circuit models for OER.

Fig. S27. Mott-Schottky curves of TiO_2/RuO_2 .

Fig. S28. UPS valence-band spectra of TiO_2/RuO_2 .

Samples	Ti (wt.%)	Ru (wt.%)
d-TiO ₂ /RuO ₂	58.09	2.42
TiO_2/RuO_2	58.18	2.31
d-TiO ₂ /RuO ₂ -1	66.78	0.45
d-TiO ₂ /RuO ₂ -3	58.09	1.33
d-TiO ₂ /RuO ₂ -7	55.70	3.57

 Table S1. Inductive Coupled Plasma (ICP) results of prepared samples.

Table S2. Comparison of overpotential (10 mA cm^{-2}) and Tafel slopes for OER between d-TiO₂/RuO₂ and various reported catalysts.

Catalyst	η ₁₀₀ (mV)	References	
d-TiO ₂ /RuO ₂	226	This work	
a-RuTe ₂	245	Nat. Commun. 2019, 10, 5692	
RuO ₂ Nanosheet	250	Adv. Energy Mater. 2019, 9, 1803795	
RuO ₂ -NaPO ₃	250	Curr. Nanosci. 2017, 13	
1D-RuO2-CN _x	250	ACS Appl. Mater. Interfaces 2016, 8, 28678-28688	
0.27-RuO ₂ @C	250	Nano Energy 2019, 55, 49-58	
RuOOH	255	Adv. Energy Mater. 2019,9, 1803795	
PDO-RuO ₂	257	ACS Appl. Mater. Interfaces 2019, 11, 42298-42304	
SS PtRuO ₂ HNSs	260	Sci. Adv. 2022,8, eab19271	
Ru-N-C	267	Nat. Commun. 2019, 10, 4849	
RuO ₂ /(Co,Mn) ₃ O ₄ /CC	270	Appl. Catal B-Environ. 2021, 297, 120442	
IrO ₂ @RuO ₂	270	J. Phys.Chem. C 2016, 120, 2562-2573	
RuO ₂ @C@SiO ₂	280	ACS Appl. Mater. Interfaces 2017, 9, 2387-2395	
IrO2-RuO2@Ru(3:1)	281	J. Mater. Chem. A. 2017, 5, 17221-17229	
Ru@IrO _x	282	Chem 2019, 5, 445	
Ru-SA/Ti ₃ C ₂ T _x	290	Small 2020, 16, e2002888	
$Y_{1.85}Zn_{0.15}Ru_2O_{7-x}$	291	Appl. Catal. B: Environ. 2019, 244, 494-501	

RuIr@CoNC	300	ACS Catal. 2021, 11, 3402	
RuNiO _x	386	J. Energy Chem. 2023, 77, 54-61	
Mn/TiO ₂ -RuO ₂	386	Appl. Catal B-Environ. 2020, 261 118225	

Table S3. Overall water splitting fitting results of EIS for $d-TiO_2/RuO_2$ and TiO_2/RuO_2 .

Catalysts	Rs (ohm)	Rp (ohm)	Error (%)
d-TiO ₂ /RuO ₂	1.15	6.52	0.59
TiO ₂ /RuO ₂	1.58	12.45	0.59