Electronic Supporting Information

The transformation of a zero-dimensional cluster into a onedimensional chain structure achieving a dramatically enhanced birefringence in tin(II)-based oxalates

Liying Ren,^a Linhong Cheng,^a Xiaoyan Zhou,^a Jinxuan Ren,^a Liling Cao,^{*a} Ling Huang,^a Xuehua Dong,^a Yuqiao Zhou,^b Daojiang Gao^a and Guohong Zou^{*b}

^{*a*}College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China.

^bCollege of Chemistry, Sichuan University, Chengdu, 610065, P. R. China.

E-mail: llcao21@163.com; zough@scu.edu.cn

Table of contents

Sections	Titles	Pages
Table S1	$Crystal \ data \ and \ structure \ refinement \ for \ K_2Sn(C_2O_4)_2 \cdot H_2O \ and \ K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O.$	S3
Table S2	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³),	S4
	and calculated Bond Valence Sum for $K_2Sn(C_2O_4)_2 \cdot H_2O$. $U_{(eq)}$ is defined as one third of	
	the trace of the orthogonalized U_{ij} tensor.	
Table S3	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³),	S5
	and calculated Bond Valence Sum for $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$. $U_{(eq)}$ is defined as one third	
	of the trace of the orthogonalized U_{ij} tensor.	
Table S4	Selected bond lengths [Å] and angles [°] for $K_2Sn(C_2O_4)_2 \cdot H_2O$.	S6
Table S5	Selected bond lengths [Å] and angles [°] for $K_2Sn_2(C_2O_4)_2F_2$ ·H ₂ O.	S7
Table S6	The dihedral angles (y) between the two CO_2 in one $C_2O_4^{2-}$ group, polarizability	S 8
	anisotropy and HOMO-LUMO gap of Sn^{2+} -polyhedra in $K_2Sn(C_2O_4)_2 \cdot H_2O$, and	
	$K_2Sn_2(C_2O_4)_2F_2\cdot H_2O.$	
Table S7	The calculation of the contribution of Sn^{2+} cations and $\mathrm{C_2O_4}^{2\text{-}}$ anions to birefringence in	S 8
	a unit cell in $K_2Sn(C_2O_4)_2 \cdot H_2O$ and $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.	
Fig. S1	Powder XRD patterns of $K_2Sn(C_2O_4)_2$ ·H ₂ O and $K_2Sn_2(C_2O_4)_2F_2$ ·H ₂ O.	S8
Fig. S2	The TG curves of $K_2Sn(C_2O_4)_2$ ·H ₂ O and $K_2Sn_2(C_2O_4)_2F_2$ ·H ₂ O.	S9
Fig. S3	XRD patterns for compounds $K_2Sn(C_2O_4)_2 \cdot H_2O$ and $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$ after melting.	S9
Fig. S4	IR spectra of $K_2Sn(C_2O_4)_2 \cdot H_2O$ and $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.	S9
Fig. S5	The UV-vis-NIR diffuse reflectance spectrum and band gap of $K_2 Sn(C_2O_4)_2 \cdot H_2O$ and	S10
	$K_2Sn_2(C_2O_4)_2F_2\cdot H_2O.$	
Fig. S6	Birefringence measurement photo of $K_2Sn(C_2O_4)_2 \cdot H_2O$ and $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.	S10

Formula	$K_2Sn(C_2O_4)_2 \cdot H_2O$	$K_2Sn_2(C_2O_4)_2F_2\cdot H_2O$		
Formula weight	390.95	547.669		
Crystal system	triclinic	monoclinic		
Space group	<i>P</i> -1	$P2_1/c$		
<i>a</i> (Å)	6.43740(10)	10.2509(2)		
$b(\text{\AA})$	6.61500(10)	9.3149(2)		
$c(\text{\AA})$	11.8275(2)	12.4438(3)		
$lpha/^{\circ}$	95.605(2)	90		
$eta /^{\circ}$	93.355(2)	94.397(2)		
$\gamma/^{\circ}$	101.985(2)	90		
<i>V</i> (Å ³)	488.712(14)	1184.71(5)		
Ζ	2	4		
ρ (calcd)(g/cm ³⁾	2.657	3.071		
Temperature(K)	299.55(10)	302.59(10)		
<i>F</i> (000)	372.0	1013.5		
μ/mm^{-1}	3.499	4.985		
$R_1, wR_2(I \geq 2\sigma(I))$	0.0284/0.0718	0.0188/ 0.0476		
GOF on F ²	1.157	0.995		

 $\textbf{Table S1. } Crystal \ data \ and \ structure \ refinement \ for \ K_2Sn(C_2O_4)_2 \cdot H_2O \ and \ K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O.$

 $\overline{R_1(F) = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR_2(F_o^2)} = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$

atom	X	у	Z	$U_{\rm eq}({ m \AA}^2)$	BVS
Sn1	7457.9(3)	1589.8(3)	2292.2(2)	22.87(9)	2.04
K1	2551.3(10)	600.5(10)	4162.1(5)	28.85(16)	1.21
K2	174.2(12)	7292.9(15)	1148.3(6)	39.52(19)	0.92
O1	6839(3)	2467(3)	4218.4(17)	24.4(4)	2.09
02	6848(3)	2482(4)	488.8(17)	27.3(5)	1.99
03	8293(4)	4904(3)	2640.9(17)	29.0(5)	2.22
O4	4146(3)	1827(4)	2105.4(17)	28.8(5)	2.12
05	8892(4)	7699(3)	3909.8(19)	30.2(5)	1.96
O6	7475(4)	5216(4)	5549.6(18)	31.9(5)	1.70
07	4224(3)	2782(4)	9245.2(17)	29.2(5)	1.68
08	3584(4)	7406(4)	2779(2)	38.9(6)	1.92
09	1551(4)	2476(6)	969(2)	63.7(11)	1.75
C1	4940(4)	2554(4)	202(2)	20.6(5)	
C2	7451(4)	4388(4)	4564(2)	20.2(5)	
C3	8285(4)	5816(5)	3652(2)	21.7(6)	
C4	3394(5)	2283(5)	1164(2)	26.9(6)	

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³), and calculated Bond Valence Sum for K₂Sn(C₂O₄)₂·H₂O. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	у	Z	$U_{\rm eq}({\rm \AA}^2)$	BVS
Sn1	1354.7(2)	8088.9(2)	4987.9(2)	21.00(5)	1.97
Sn2	5200.6(2)	6513.8(2)	8906.6(2)	19.90(5)	1.95
K1	6562.8(5)	9641.7(6)	890.8(4)	27.68(11)	1.14
K2	9788.0(6)	5020.2(8)	3152.5(6)	42.50(16)	0.88
F1	5590.0(14)	8667.1(14)	8959.5(11)	24.8(3)	1.01
F2	1221.2(13)	5932.9(15)	4846.9(12)	28.3(3)	1.16
01	7230.4(16)	6211(2)	8230.0(14)	28.0(4)	1.90
O2	4920.0(15)	6951.4(19)	7088.1(13)	25.1(3)	2.04
O3	2934.5(16)	7708.8(19)	8288.0(13)	24.6(3)	1.89
O4	3602.9(16)	7284(2)	5603.2(13)	29.7(4)	1.80
05	7075.9(16)	6830.8(19)	336.6(14)	26.2(4)	1.85
O6	1566.6(15)	7779(2)	6810.9(13)	25.7(3)	1.97
07	9365.2(18)	6722(2)	8406.7(16)	35.7(4)	1.89
08	9216.8(17)	7241(2)	533.6(16)	38.3(5)	1.81
09	7275.8(18)	5487(2)	2461.7(16)	35.2(4)	2.40
C1	3832(2)	7246(2)	6601.4(18)	19.7(4)	
C2	8270(2)	6590(2)	8763.7(19)	21.9(4)	
C3	8187(2)	6913(2)	9983.6(19)	21.2(4)	
C4	2678(2)	7604(2)	7302.1(17)	19.1(4)	

Table S3. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³), and calculated Bond Valence Sum for K₂Sn₂(C₂O₄)₂F₂·H₂O. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Sn1-O1	2.373(2)	K2-O7 ^{ix}	2.832(2)
Sn1-O2	2.301(2)	K2-O8	2.820(3)
Sn1-O3	2.138(2)	K2-O9 ^{ix}	2.711(3)
Sn1-O4	2.170(2)	K2-O9 ⁱⁱⁱ	3.389(4)
K1-O1 ⁱⁱⁱ	2.774(2)	O1-C2	1.268(3)
K1-O1 ^{vi}	2.991(2)	O2-C1	1.267(3)
K1-O4 ⁱⁱⁱ	2.822(2)	O3-C3	1.286(4)
K1-O5 ^{iv}	2.740(2)	O4-C4	1.276(4)
K1-O5	2.693(2)	O5-C3	1.228(4)
K1-O6 ^{iv}	2.759(3)	O6-C2	1.236(3)
K1-O8	2.760(2)	O7-C1	1.232(3)
K2-O2 ^{viii}	2.796(2)	O9-C4	1.230(4)
K2-O3	2.661(2)	C1-C4	1.554(4)
K2-O5	3.414(2)	C2-C3	1.550(4)
O2-Sn1-O1	141.47(7)	Sn1-O3-K2	121.82(9)
O3-Sn1-O1	72.32(7)	Sn1-O4-K1 ⁱ	103.3(2)
O3-Sn1-O2	80.34(8)	C4-O4-Sn1	119.24(19)
O5-K1-O1 ^{iv}	161.48(7)	C4-O4-K1 ⁱ	136.97(19)
$O5^{iii}$ -K1-O1 ^{vi}	79.23(6)	O7-C1-O2	126.1(3)
O5 ⁱⁱⁱ -K1-O4 ^{iv}	139.22(7)	O7-C1-C4	118.5(3)
O2 ^{viii} -K2-O5	151.69(6)	O1-C2-C3	117.4(3)
O3-K2-O5	40.47(6)	O6-C2-O1	126.7(3)
C2-O1-Sn1	113.94(17)	05-C3-O3	123.7(3)
Sn1-O2-K2viii	123.81(8)	O5-C3-C2	120.3(3)
O9-C4-O4	124.7(3)	O4-C4-C1	119.0(3)

Table S4. Selected bond lengths [Å] and angles [°] for $K_2Sn(C_2O_4)_2 \cdot H_2O$.

Symmetry codes:

(i) -1+*x*, -1+*y*, +*z*; (ii) +*x*, -1+*y*, +*z*; (iii) 1+*x*, 1+*y*, +*z*; (iv) 2-*x*, 2-*y*, 1-*z*; (v) 3-*x*, 2-*y*, 1-*z*; (vi) 2-*x*, 1-*y*, 1-*z*; (vii) +*x*, 1+*y*, +*z*; (viii) 2-*x*, 1-*y*, -*z*; (ix) 1-*x*, 1-*y*, -*z*.

(i) -1+*x*, -1+*y*, +*z*; (ii) +*x*, -1+*y*, +*z*; (iii) 2-*x*, 2-*y*, 1-*z*; (iv) 1+*x*, 1+*y*, +*z*; (v) 3-*x*, 2-*y*, 1-*z*; (vi) 2-*x*, 1-*y*, 1-*z*; (vii) +*x*, 1+*y*, +*z*; (viii) 2-*x*, 1-*y*, -*z*; (ix) 1-*x*, 1-*y*, -*z*.

Sn1-F2	2.0197(14)	K2-O6 ⁱⁱ	2.9560(19)
Sn1-O4	2.4877(17)	K2-O6 ^{vii}	3.2834(18)
Sn1-O6	2.2806(17)	K2-O9	2.687(2)
Sn2-F1	2.0451(13)	O1-C2	1.262(3)
Sn2-O1	2.3209(17)	O2-K1 ^{vii}	2.7645(17)
Sn2-O2	2.2957(17)	O2-C1	1.258(3)
Sn2-O5	2.5347(18)	O3-C4	1.239(3)
K1-F1	2.6883(15)	O4-C1	1.247(3)
K1-F1 ^{iv}	2.7293(15)	O5-C3	1.254(3)
K1-F2 ^v	2.7874(15)	O6-C4	1.262(3)
K1-O1 ^{vi}	3.0441(18)	O7-K2 ^{ix}	3.085(2)
K1-O2 ^{vi}	2.7644(17)	O7-K2 ^{viii}	2.722(2)
K1-O3 ^{iv}	2.7055(18)	O7-C2	1.245(3)
K1-O4 ^v	3.082(2)	O8-K2 ^v	3.187(2)
K1-O5	2.7683(19)	O8-C3	1.251(3)
K2-F2	2.6177(16)	C1-C4	1.558(3)
K2-F2 ⁱⁱ	2.9071(16)	C2-C3	1.556(3)
F2-Sn1-O4	77.42(6)	O7 ⁱⁱⁱ -K2-O8 ⁱ	142.02(6)
O6-Sn1-O4	68.92(5)	Sn2-F1-K1 ^{iv}	114.29(6)
O8 ⁱⁱⁱ -Sn1-O4	136.87(6)	K1- $F1$ - $K1$ ^{iv}	89.46(4)
F1-Sn2-O1	87.28(6)	Sn1-F2-K2 ⁱⁱ	104.80(6)
O1-Sn2-O5	67.42(6)	$K1^{i}$ -F2-K2 ⁱⁱ	120.19(5)
O2-Sn2-O5	134.61(6)	$K2$ - $F2$ - $K1^{i}$	90.91(5)
F1- $K1$ - $F1$ ^{iv}	90.54(4)	C2-O1-K1vii	134.04(14)
$F1^{iv}$ -K1-F2 ^v	117.19(5)	Sn2-O2-K1vii	113.61(6)
F1-K1-O1 ^{vi}	143.85(5)	C1-O4-Sn1	114.50(14)
$F1^{iv}$ -K1-O2 ^{vi}	75.17(5)	C3-O5-K1	102.97(14)
F1 ^{iv} -K1-O5	137.14(5)	K2 ⁱⁱ -O6-K2 ^{vi}	105.25(5)
$O3^{iv}$ -K1-F1 ^{iv}	65.12(5)	Sn1 ^{ix} -O8-K2 ^v	89.18(6)
O3 ^{iv} -K1-O5	157.30(5)	C3-O8-Sn1 ^{ix}	124.96(15)
O3 ^{iv} -K1-C3	138.47(6)	O2-C1-C4	117.40(19)
F2 ⁱⁱ -K2-O6 ⁱⁱ	61.25(4)	O4-C1-O2	125.3(2)
F2 ⁱⁱ -K7-O3	70.88(5)	O7-C2-O1	126.0(2)
O7 ^{viii} -K2-F2 ⁱⁱ	125.61(6)	O5-C3-C2	116.7(2)

Table S5. Selected bond lengths [Å] and angles [°] for $K_2Sn_2(C_2O_4)_2F_2$ ·H₂O.

Symmetry codes:

(i) 1-*x*, -1/2+y, 3/2-z; (ii) -*x*, 1-*y*, 1-*z*; (iii) -1+x, 3/2-y, -1/2+z; (iv) 1-*x*, 2-*y*, 2-*z*; (v) 1-*x*, 1/2+y, 3/2-z; (vi) +*x*, 3/2-y, 1/2+z; (vii) +*x*, 3/2-y, -1/2+z; (viii) 1-*x*, 1-*y*, 1-*z*; (ix) 1+*x*, 3/2-y, 1/2+z.

formaula	G1 011 0 G		polarizability	HOMO-LUMO	
	groups	γ	anisotropy	gap (eV)	
	$C_2O_4^{2-}(I)$	1.512	22.30	5.68	
$\mathrm{K}_{2}\mathrm{Sn}(\mathrm{C}_{2}\mathrm{O}_{4})_{2}\mathrm{H}_{2}\mathrm{O}$	C ₂ O ₄ ²⁻ (II)	6.736	22.20	5.72	
(hkl:010)	Sn ²⁺ (I)		35.14	1.85	
	C ₂ O ₄ ²⁻ (III)	6.571	22.60	5.63	
$K_2Sn_2(C_2O_4)_2F_2\cdot H_2O$	$C_2O_4^{2-}(IV)$	2.482	22.40	5.67	
(hkl:010)	Sn ²⁺ (II)		106 50	1.50	
	Sn ²⁺ (III)		100.30	1.30	

Table S6. The dihedral angles (γ) between the two CO₂ in one C₂O₄²⁻ group, polarizability anisotropy and HOMO-LUMO gap of Sn²⁺-polyhedra in K₂Sn(C₂O₄)₂·H₂O and K₂Sn₂(C₂O₄)₂F₂·H₂O.

Table S7. The calculation of the contribution of Sn^{2+} cations and $C_2O_4^{2-}$ anions to birefringence in a unit cell in $K_2Sn(C_2O_4)_2 \cdot H_2O$ and $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.

formula	G#011#2	14	0	~/P	Cosa/	$\rho \times \cos \alpha /$	Contribution
Iomuna	groups	п	ρ	α/ρ	Cosβ	$\rho \times \cos \beta$	percentage (%)
	$C_2O_4^{2-}(I)$	2	0.0041	82.579	0.1637	0.0007	(1.04
$K_2Sn(C_2O_4)_2H_2O$	C ₂ O ₄ ²⁻ (II)	2	0.0041	9.817	0.9854	0.0040	01.04
(hkl:010)	Sn ²⁺ (I)	2	0.0041	42.345	0.7391	0.0030	38.96
	C ₂ O ₄ ²⁻ (III)	4	0.0034	13.454	0.9726	0.0033	40.62
$K_2Sn_2(C_2O_4)_2F_2\cdot H_2O$	$C_2O_4^{2-}(IV)$	4	0.0034	15.859	0.9619	0.0033	49.02
(hkl:010)	Sn ²⁺ (II)	4	0.0034	6.085	0.9944	0.0034	50.28
	Sn ²⁺ (III)	4	0.0034	11.266	0.9807	0.0033	30.38

n: the number of Sn²⁺ cations or C₂O₄²⁻ in a unit cell. ρ : the density of Sn²⁺ cations or C₂O₄²⁻ in a unit cell. α : The angle between the of direction the lone pair electron of Sn²⁺ and *YZ* plane. β : the dihedral angle between C₂O₄²⁻ plane and *YZ* plane

Fig. S1 Powder XRD patterns of (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$. The red curves are patterns of samples, the black are the simulated ones.

Fig. S2 The TG curves of (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.

Fig. S3 XRD patterns for compounds (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$ after melting.

Fig. S4 IR spectra of (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.

Fig. S5 The UV-vis-NIR diffuse reflectance spectrum and band gap of (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.

Fig. S6 Birefringence measurement photo of (a) $K_2Sn(C_2O_4)_2 \cdot H_2O$ and (b) $K_2Sn_2(C_2O_4)_2F_2 \cdot H_2O$.