Electronic Supplementary Information

Flexible strontium-based metal-organic framework scintillation screen for highresolution X-ray imaging

Peng-Kun Wang,^{a,b,c} Wen-Fei Wang,^{a,b,c} Bao-Yi Li,^{a,b,c} Mei-Juan Xie,^{a,b} Hong-Yi Bian,^{a,b} Shuai-Hua Wang,^{a,b} Fa-Kun Zheng,^{*a,b} and Guo-Cong Guo^{*a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

^c University of Chinese Academy of Sciences, Beijing 100039, P. R. China

* Corresponding author to E-mail: zfk@fjirsm.ac.cn

Fig. S1 (a) The coordination environment and the intramolecular hydrogen bonds of DOBPDC^{2–}. (b) The coordination mode of carboxylate in DOBPDC^{2–}.

Fig. S2 The coordination environment of Sr^{2+} . For clarity, all hydrogen atoms are omitted.

Fig. S3 (a) The 1D chain structure of **1** along the *c*-axis. (b) The 2D layer of **1** parallel to the *bc* plane. All hydrogen atoms and DMF molecules are omitted for clarity.

Fig. S4 The powdered X-ray diffraction (PXRD) patterns of 1.

Fig. S5 The FT-IR spectra of H₂DOBPDC and 1.

Fig. S6 The TG&DSC curves of 1.

Fig. S7 X-ray dose rate dependent RL of **1** in the range of 0.69–42.29 mGy/s. The inset is the photos of **1** with X-ray on/off.

Fig. S8 The RL intensity normalized by X-ray attenuation efficiency of the samples with 2 mm of **1**, the conventional scintillators (BGO, BaF₂, PWO and organic crystal anthracene) and reported Pb-based SMOFs (Pb-SMOF-1, Pb-SMOF-2) tested at the same dose rate of 42.29 mGy/s.

Fig. S9 The X-ray dose rate dependent RL of **1** after being immersed in water for 30 d in the range of 0.69–42.29 mGy/s.

Fig. S10 RL intensities recorded for 1 over continuous 100 on/off cycles (dose rate:

Fig. S11 The solid-state UV-Vis absorption spectra of 1 and H₂DOBPDC.

Fig. S12 The PL spectra of 1. The inset is the photos of crystals 1 under UV light (365

nm) and in natural light, respectively.

Fig. S13 Photoluminescent CIE profile of 1

Fig. S14 (a) The solid-state PL emission spectra of $H_2DOBPDC$ under different excitation wavelengths. (b) The solid-state PL emission spectra of 1 under different excitation wavelengths.

Fig. S15 PL decay time graph of solid-state 1 tested at 298 K.

Fig. S16 (a) The simulated mass attenuation coefficient of **1** and other references as a function of the X-ray energy range from 0 to 100 keV. (b) The X-ray attenuation efficiencies as a function of the material thickness of **1** and other references toward 50 keV X-ray photons.

Fig. S17 (a) The X-ray dose rate dependent RL spectra of the 1-film. (b) The RL intensity of the 1-film *versus* the X-ray dose rate.

Fig. S18 The RL spectra of 1 and 1-film at the same dose rate of 42.29 mGy/s.

Fig. S19 The SEM photo of the 1-film.

Fig. S20 The X-ray radiograph of curved wires under the flat 1-film.

Fig. S21 The RL intensities of the **1-film** under continuous X-ray irradiation with the dose rate of 20.87 mGy/s.

Fig. S22 The RL intensities of the **1-film**, after 30 d in ambient condition and after humidity treatment at the dose rate of 42.29 mGy/s.

Fig. S23 The RL intensities recorded for the **1-film** over continuous 120 on/off cycles with the dose rate of 20.87 mGy/s.

Fig. S24 The physical photo and X-ray radiograph of the **1-film** after 30 d in ambient conditions (20–35 °C, 40–65% humidity).

	$[Sr_2(DOBPDC)_2(DMF)]_n$	
CCDC	2261586	
Formula	$C_{31}H_{23}NO_{13}Sr_2$	
M_r	792.74	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	23.5393(4)	
$b/{ m \AA}$	9.0137(2)	
$c/{ m \AA}$	13.6655(3)	
$lpha/^{\circ}$	90	
$eta /^{\circ}$	105.235(2)	
$\gamma^{/\circ}$	90	
<i>V</i> [Å ³]	2797.59(10)	
Ζ	4	
Calcd. density (g cm ^{-3})	1.882	
μ/mm^{-1}	5.709	
<i>F</i> (000)	1584	
$2 heta/^{\circ}$	7.786 to 153.224	
Reflections collected	9232	
Goodness-of-fit on F^2	1.061	
Final <i>R</i> indices $[I > 2\sigma(I)]$	<i>R</i> indices $[I > 2\sigma(I)]$ $R_I = 0.0291$	
	$wR_2 = 0.0756$	

 Table S1 Crystal data and structure refinement for 1.

 ${}^{a}R_{1} = \sum (F_{o} - F_{c}) / \sum F_{o} \cdot {}^{b}wR_{2} = [\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2}]^{1/2}.$

Selected bond lengths (Å)			
Sr1–O1	2.5697(15)	Sr1–O2	2.5462(18)
Sr1–O3	2.9549(17)	Sr1-O3#1	2.6224(18)
Sr1–O4	2.660(2)	Sr1–O5#5	2.8885(18)
Sr1-O6#2	2.6037(18)	Sr1-O6#3	2.7538(17)
Sr1–O7#3	2.6171(18)		
Selected bond angles (°)			
Sr1#201Sr1	105.62(9)	O6#3-Sr1-O4#4	60.34(6)
O6#3-Sr1-O6#1	70.55(6)	O6#3-Sr1-O3	89.13(5)
O6#1-Sr1-O3	139.74(5)	O6#3-Sr1-O3#2	81.88(6)
O6#3-Sr1-O5#5	136.27(6)	O6#1-Sr1-O5#5	104.35(5)
O6#3-Sr1-O7#1	118.06(6)	O4#4-Sr1-O6#1	71.84(6)
O4#4-Sr1-O3	131.85(5)	O4#4-Sr1-O5#5	70.84(6)
O3#2-Sr1-O6#1	74.83(5)	O3#2-Sr1-O4#4	139.81(5)
O3#2-Sr1-O3	67.97(6)	O3#2-Sr1-O5#5	140.33(6)
O2–Sr1–O6#1	163.66(6)	O2-Sr1-O6#3	97.04(6)
O2–Sr1–O4#4	93.69(6)	O2-Sr1-O3#2	114.87(6)
O2–Sr1–O3	46.92(5)	O2–Sr1–O5#5	76.94(5)
O2–Sr1–O1	80.33(5)	O2-Sr1-O7#1	139.47(6)
O5#5-Sr1-O3	113.92(5)	O1–Sr1–O6#3	149.71(6)
O1–Sr1–O6#1	115.80(4)	O1–Sr1–O4#4	143.68(6)
O1–Sr1–O3	66.91(5)	O1–Sr1–O3#2	72.28(5)
O1–Sr1–O5#5	72.92(6)	O1–Sr1–O7#1	78.69(6)
O7#1-Sr1-O6#1	48.50(5)	O7#1-Sr1-O4#4	83.48(7)
O7#1-Sr1-O3	143.57(6)	O7#1-Sr1-O3#2	90.99(6)
Sr1#3-O6-Sr1#6	109.46(6)	O7#1-Sr1-O5#5	63.90(6)
Sr1#203Sr1	94.27(5)		

 Table S2 Selected bond lengths (Å) and bond angles (°) in 1

Symmetry codes: #1 - 1/2 + x, 1/2 + y, -1 + z; $\#2 \ 1 - x$, y, 1/2 - z; $\#3 \ 3/2 - x$, 1/2 - y, 1

-z; #4 x, 1 - y, -1/2 + z; #5 3/2 - x, 3/2 - y, 1 - z; #6 1/2 + x, -1/2 + y, 1 + z.