Supporting Information

Portable Self-powered Photoelectrochemical Immunosensor Based on Cu₃SnS₄

Nanoflower for Ultra-sensitive and Real-time Detection of Human Cytochrome c

Xin Zhang^a, Ling-Hua Jin^a, Yan-Yan Li^b, Zi-Zhen Xiao^a, Yu Feng^b, Ying-Wu Lin^{b*},

and Ye Zhang^a*

a. Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China

E-mail: yezhang@usc.edu.cn

b. Key Lab of Protein Structure and Function of Universities in Hunan Province, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China

E-mail: ywlin@usc.edu.cn

Figure S1. (**A**) SEM image of CuSn(OH)₆ (500 nm) and (**B**) SEM image of CuSn(OH)₆ (100 nm).

X-ray diffraction (XRD) was employed to analyze the purity and crystal structure of the products. As indicated in **Figure S2**, CuSn(OH)₆ is a tetragonal sulfide with five strong peaks located at 20 positions of 12.5°, 21.8°, 25.2°, 29.7°, 32.4°, 33.5°, 39.3°, 44.4°, 45.4°, 49.1°, 51.7°, 54.3°, 60.8°, 67.7° and 78.3°, corresponding to diffractions from the (100), (110), (200), (201), (102), (210), (202), (220), (212), (103), (400), (203), (410), (204) and (332) planes of the CuSn(OH)₆ crystal, which is consistent with the description in the literature^{1, 2}.

Figure S2. (A) XRD patterns of CuSn(OH)₆; (B) XPS spectra of Cu₃SnS₄.

Figure S3. (A) Plots of $(\alpha hv)^2$ vs. (hv) used to evaluate the optical bandgaps of Cu₃SnS₄; (B)

Mott-Schottky curves of Cu₃SnS₄.

Figure S4. Photocurrent response of electrodes of different materials.

Figure S5. Effects of (A) the concentration of Cu_3SnS_4 ; (B) the pH value of the PBS; (C) the concentration of AA; (D) the incubation time of Cyt *c*.

Figure S6. (A) Reproducibility (Cyt c: 100 pM) and (B) Storage stability of the PEC immunosensor.

Figure S7. Real-time detection of Cyt *c* system.

Electrode	$R_{\rm s}\left(\Omega ight)$	$R_{\rm et}\left(\Omega\right)$	Ι
Cu_3SnS_4	22.86	22.13	49.8μΑ
Cu ₃ SnS ₄ /CS	23.53	42.08	35.6µА
Cu ₃ SnS ₄ /CS/anti-Cyt c	23.97	68.29	28.8µA
Cu ₃ SnS ₄ /CS/anti-Cyt c/BSA	23.70	79.75	19.6µA
Cu ₃ SnS ₄ /CS/anti-Cyt <i>c</i> /BSA/Cyt <i>c</i>	23.30	97.00	12.6µA

Table S1 Simulation parameters of the equivalent circuit components

Table S2 Different Cyt c detection methods were compared

Method	Nanomaterials	Linear range	Detection limit	Referenc es
Fluorescence	CdTe	0.5 μΜ-2.5 μΜ	0.5 μΜ	3
Fluorescence	VS ₂ -Nanosheet	0.75 nM-50 nM	0.5 nM	4

Fluorescence	DNA-AgNCs@tween 80	0.8 nM-20000 nM	0.8 nM	5
Colorimetric, chemiluminescence	β-Co(OH) ₂ CMk	1 pM-5 μM, 50 μM-1 mM	2 fM	6
EIS	Cyt-c/Polypyrrole/SPE	10 pM-1 nM	5 pM	7
EIS	CdS/graphene	1 nM-100 nM	0.3 nM	8
PEC	CdS/CuInS ₂ /Au/TiO ₂	5 pM-100 nM	5 pM	9
PEC	Cu ₃ SnS ₄	1 fM-1000 nM	0.35 fM	This work

Table S3. Analytical results of Cyt c in human serum samples

Sample	Added (nM)	Detection content (nM, n=3)	Average content (nM)	RSD (%)	Recovery (%)
Serum #789	0.1	0.085、0.095、0.108	0.096	1.55	96.17
Serum #757	0.1	0.085, 0.116, 0.92	0.098	1.89	97.63
Serum #730	0.5	0.465、0.554、0.486	0.502	3.64	100.4
Serum #729	1	1.065、0.851、0.956	0.958	1.34	95.76

References:

- 1. J. Huang, X. Xu, C. Gu, S. Yao, Y. Sun and J. Liu, Large-Scale Selective Preparation of Porous SnO₂ 3D Architectures and Their Gas-Sensing Property, *CrystEngComm*, 2012, **14**.
- 2. J. Huang, Y. Wang, C. Gu and M. Zhai, Large Scale Synthesis of Uniform CuS Nanotubes by a Sacrificial Templating Method and Their Application as an Efficient Photocatalyst, *Materials Letters*, 2013, **99**, 31-34.
- 3. R. M. Amin, S. A. Elfeky, T. Verwanger and B. Krammer, Fluorescence-based CdTe Nanosensor for Sensitive Detection of Cytochrome *C*, *Biosens*. *Bioelectron.*, 2017, **98**, 415-420.
- 4. X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, A VS₂/Aptamer-Based Cytochrome *c* Sensor was Successfully Constructed by First Applying the DNA-Adsorbing Ability/Fluorescence-Quenching Properties of VS₂ in Bioanalysis., *New J. Chem.*, 2014.
- Y. Qin, M. Daniyal, W. Wang, Y. Jian, W. Yang, Y. Qiu, C. Tong, W. Wang and B. Liu, An Enhanced Silver Nanocluster System for Cytochrome *c* Detection and Natural Drug Screening Targeted for Cytochrome *c*, Sens. Actuators B Chem, 2019, 291, 485-492.

- F. Mesgari, S. M. Beigi, N. Fakhri, M. Hosseini, M. Aghazadeh and M. R. Ganjali, Paper-Based Chemiluminescence and Colorimetric Detection of Cytochrome c by Cobalt Hydroxide Decorated Mesoporous Carbon, *Microchemical Journal*, 2020, 157.
- 7. Q. Wen, X. Zhang, J. Cai and P. H. Yang, A Novel Strategy for Real-Time and in Situ Detection of Cytochrome *c* and Caspase-9 in Hela Cells During Apoptosis, *Analyst*, 2014, **139**, 2499-2506.
- 8. Y.-P. Dong, J. Wang, Y. Peng and J.-J. Zhu, Electrogenerated Chemiluminescence Resonance Energy Transfer Between Luminol and CdS/Graphene Nanocomposites and its Sensing Application, *Journal of Electroanalytical Chemistry*, 2016, **781**, 109-113.
- L. Wang, W. Gu, P. Sheng, Z. Zhang, B. Zhang and Q. Cai, A label-free Cytochrome *c* Photoelectrochemical Aptasensor Based on CdS/CuInS₂/Au/TiO₂ Nanotubes, *Sens. Actuators B Chem*, 2019, 281, 1088-1096.