Supporting information

Making one V^{IV} substitution for Mo on classical $[MoV_2O_4]^{2+}$ group: the first heterobimetallic Mo–V subunit in Polyoxomolybdates–Bisphosphonate family

Xiangyu Ren,^a Baokuan Chen,^{*a}, Gang Zhang,^a Yanfeng Bi^{*a}, Lingling Dai,^a Guoping Yang,^{*b}

^aSchool of Petrochemical Engineering, Liaoning Petrochemical University, 113001, China.

^bSchool of Chemistry, Biology and Material Science, Jiangxi Province Key Laboratory of

Synthetic Chemistry, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East

China University of Technology, Nanchang 330013, China

E-mail: chenbaokuan@lnpu.edu.cn (B. K. Chen); *biyanfeng@lnpu.edu.cn* (Y. F. Bi); <u>erick@ecut.edu.cn</u> (G. P. Yang)

1 General Methods

The chemicals are bought on the commercial sources and can be used without further treatment. Powder X-ray diffraction (PXRD) at room temperature was obtained by using Brukerr D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.5406$ Å). Fourier transform infrared spectrum (FT-IR) was collected with Nicolet IS5 instrument using KBr. Thermogravimetric analysis (TGA) was performed in a nitrogen flow at a heating rate of 10 °C min⁻¹ from 25 to 900 °C on an TA Q600 instrument. X-ray photoelectron spectroscopy (XPS) characterization was executed by using an ESCALAB 250Xi with Al K α X-ray source (1486.6 eV). ¹H NMR were collected in 400 HMz on Bruker AVANCE III 400.

2 Single crystal X-ray diffraction

Single crystal data collection of compounds 1 and 2 was collected at 168K and 298 K using Mo-K α radiation on a Bruker D8 QUEST system. The structures were solved by direct method and refined by full-matrix least-squares on F² using the *Olex* 2⁻¹ after being handled by using the *SQUEEZE* routine of *PLATON*.² NH₄⁺ and H₂O could not be distinguished based on the observed electron densities, therefore, the amount of water and ammonium is calculated based on TGA to maintain charge balance. Without using lattice water, all non-hydrogen atoms were polished anisotropically. The organic ligand's hydrogen atoms were locked in their predetermined places. The crystal data and structural refinement parameters for the two compounds are given in Table S1. The CCDC number of compound 1 and 2 are 2277603-2277604.

3 Preparation and Synthesis

3.1 Preparation of [Mo₂O₄(H₂O)₆]²⁺ in aqueous HCl

Hydrazine hydrate $N_2H_4 \cdot H_2O$ (500 µL, 10.3 mmol) was added to a clear solution of $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (5.82 g, 4.7 mmol) in aqueous HCl (4M, 160 mL). The mixture solution progressively turned to red after stirring at 60 °C for 3 h, which was allowed to cool to room temperature and then stored in a conical flask for later use.³

3.2 Synthesis of compound 1

The NH₄VO₃ (0.234 g, 2 mmol) and Risedronic Acid (0.566 g, 2 mmol) were added into 20 mL [Mo₂O₄(H₂O)₆]²⁺ aqueous acidic media after the pH being adjusted to 2-3 by tetraethylammonium hydroxide aqueous solution (25%). The pH of the mixture was continued to be adjusted to 4-5 by the same solutions. It follows that the turbid brown solution was heated at 60 °C for 3 h. The resulting light-yellow solution was obtained by filtering off dark blue water-insoluble substance, and then left to evaporate at room temperature. The large pale yellow green block crystals were collected by suction filtration after one day (Yield about 31.8% based on Mo). (KBr, cm⁻¹): 3450 (s), 1641 (m), 1573 (m), 1473 (m), 1394 (m), 1311 (w), 1162 (m), 1109 (s), 1066 (s), 1004 (s), 936 (s), 918 (m), 851 (s), 714 (m), 645 (m), 540 (m), 497 (w), 471 (w).

3.3 Synthesis of compound 2

Hydrazine hydrate N₂H₄·H₂O (210 µmL, 10.3 mmol) was added to a clear solution of Na₂MoO₄·2H₂O (3.40 g, 16.5 mmol) in aqueous HCl (4M, 80 mL). The mixture solution progressively turned to red after stirring at 60 °C for 3 h, which was allowed to cool to room temperature. The NaVO₃ (0.122 g, 1 mmol) were added into 20 mL $[Mo_2O_4(H_2O)_6]^{2+}$ aqueous acidic media after the pH being adjusted to 1.5 by NH₃·H₂O. Adding risedronic acid (0.566 g, 2 mmol) to the mixture and adjusting the pH to 6 with NH₃·H₂O, the mixture solution stirred at 60 °C for 3 h, which was allowed to cool to room temperature, brown block crystals of compound **2** were obtained one day later (Yield about 20.8% based on Mo). (KBr, cm⁻¹): 3444 (s), 3148 (s), 1628 (m), 1548 (w), 1393 (s), 1135 (m), 1043 (m), 914 (m), 863 (w), 775 (m), 709 (w), 663 (w), 588 (w), 512 (w), 441 (vw).

4 Characterization of compounds

The X-ray diffraction (PXRD) patterns of the compound **1** and **2** is presented in **Fig. S1**. There are no diffraction peaks from other contaminants, and the principal diffraction peaks in the experimental patterns match the calculated results well.

Fig. S1. the PXRD pattern of compound 1 and 2

The fourier transform infrared spectrum of the two compounds and Risedronic Acid have similarities. Thus, comparing the peaks in the same position, as shown in **Fig. S2**, it is believed that the v(–OH) attributed to the band at 3440 cm⁻¹. The peaks at 1640-1300 cm⁻¹ are assigned to the characteristic vibrations of the same ligand. The vibration peak at 1109 cm⁻¹ corresponds to the v(P-O) bonds in these two compounds. The peaks of the two crystals that appeared at 950–700 cm⁻¹ can be thought to be

the v(Mo = O) and v(M–O–M, M=Mo or V).⁴

Fig. S2. the IR spectra of (a) compound 1 and Risedronic Acid; (b) compound 2 and Risedronic Acid

For compounds 1 and 2, the weight loss during the first process between 25 and 120 °C is 6.85% and 10.63%, respectively (calcd 7.03% and 11.57%), a result of the two compounds losing their isolated water and coordination water molecules, which is agreed with the one from the SQUEEZE result (compound 1: 24 H₂O, 13 NH₄⁺, compound 2: 5 NH₄⁺, 4 H₂O). The weight loss of the second process between 210 and 500 °C is 16.83% and 26.92% for compound 1 and 2, respectively (calcd 17.67% and 27.67%), attributed to the loss of free tetraethylammonium in the two compounds. The weight loss between 700 and 900 °C was thought to be the cause of the collapse of the compound 1 and compound 2 skeletons. The findings of the TG analysis indicated that there were water clusters present and that two compounds had thermal stability. (Fig. S3).

Fig. S4. XPS spectra of full-scan spectrum: compound 1 and compound 2

The high-resolution spectrum of Mo 3d for **1** shows two strong peaks located at 235.9 and 232.7 eV, which are regarded as the Mo $3d_{3/2}$ and Mo $3d_{5/2}$ states of the Mo⁶⁺ species, two weak peaks located at 234.5 and 231.6 eV are attributed as the Mo $3d_{3/2}$ and Mo $3d_{5/2}$ states of the Mo⁵⁺ species.⁵ The high-resolution spectrum of V 2p shows two peaks located at 523.7 and 515.7 eV, which are regarded as the V $2p_{1/2}$ and V

 $2p_{3/2}$ states of the V⁴⁺ species (**Fig. S5**).⁶

Fig. S5. XPS spectra of compound 1: (a) Mo 3d; (b) V 2p

The high-resolution spectrum of Mo 3d for 2 shows two strong peaks located at 235.43 and 232.27 eV, which are regarded as the Mo $3d_{3/2}$ and Mo $3d_{5/2}$ states of the Mo⁶⁺ species.⁵ The high-resolution spectrum of V 2p shows two peaks located at 523.10 and 515.60 eV, which are regarded as the V $2p_{1/2}$ and V $2p_{3/2}$ states of the V³⁺ species (**Fig. S6**).⁶

Codes	1	2
Formula	${}^{\rm C_{119}H_{338}Cl_2Mo_{33}N_{16}O_{219}P_{18}V_3}$	C ₁₄ H ₂₈ ClMo ₄ N ₄ Na _{1.5} O ₃₀ P ₄ V
Mr	9415.00	1360.92
Crystal system	hexagonal	triclinic
Space group	$P6_{3}/m$	<i>P</i> -1
Temperature (K)	168.90	273.15
$a(\text{\AA})$	22.6638(6)	10.6878(16)
$b(\text{\AA})$	22.6638(6)	15.144(2)
<i>c</i> (Å)	37.7691(10)	15.247(2)
α(°)	90	66.374(5)
$\beta(^{\circ})$	90	77.188(5)
γ(°)	120	84.354(5)
Volume (Å ³)	16800.9(10)	2204.5(6)
Ζ	2	<mark>2</mark>
$D_{\rm c}({\rm mg/m^3})$	1.861	<mark>2.050</mark>
$\mu(\text{mm}^{-1})$	1.468	<mark>1.626</mark>
Reflections collected	52344	<mark>28329</mark>
Unique data	10423	<mark>7748</mark>
R _{int}	0.0585	<mark>0.0339</mark>
GOF on F ²	1.084	1.038
${}^{a}R_{1}[I > 2sigma(I)]$	0.0643	0.0327
^b wR ₂	0.1874	<mark>0.0874</mark>

Table S1 Crystallographic data for compounds 1 and 2 (SQUEEZE)

 ${}^{a}R_{I} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}.$

Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
Mo1-O1 ⁱ	2.284	0.341	Mo2-O6	2.298	0.328
Mol-O8	2.095	0.568	Mo2-O9	1.715	1.588
Mo1-O16	2.180	0.452	Mo2-O13	1.696	1.671
Mol-O18	1.817	1.205	Mo2-O18 ⁱ	2.181	0.451
Mo1-O19	1.706	1.627	Mo2-O26	1.857	1.082
Mo1-O33	1.730	1.524	Mo2-O30	2.083	0.587
В	BVS		BVS		5.706
Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
Mo3-O1 ⁱ	2.331	0.300	Mo4-O1W	2.348	0.287
Mo3-O4	2.103	0.556	Mo4-O24	2.086	0.582
Mo3-O8	1.803	1.251	Mo4-O24 ⁱ	2.087	0.581
Mo3-O20 ⁱ	2.078	0.595	Mo4-O25	1.723	1.554
Mo3-O21	1.694	1.680	Mo4-O30	1.776	1.346
Mo3-O28	1.760	1.406	Mo4-O30 ⁱ	1.777	1.343
В	BVS		BVS		5.693
Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
Mo5-O3	1.697	1.667	Mo6-O7	1.699	1.658
Mo5-O12	2.373	0.268	Mo6-O12	2.345	0.289
Mo5-O17	1.867	1.053	Mo6-O17	1.932	0.883
Mo5-O23	1.692	1.689	Mo6-O26	1.918	0.915
Mo5-O28 ⁱ	2.175	0.458	Mo6-O27	1.695	1.676
Mo5-O32	2.038	0.663	M06-O33 ⁱ	2.325	0.305
BVS		5.798	BVS		5.726
Bond	Bond length/Å	Value			
V1-05	1.584	1.807			
V1-014	1.968	0.640	-		
V1-014 ⁱ	1.968	0.640			
V1-O24	1.989	0.605			
V1-O24 ⁱ	1.989	0.605			
BVS		4.297	1		

 Table S2 Bond valence sums for compounds 17

Symmetry transformations used to generate equivalent atoms: i: x, y, 1/2-z.

Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
Mo1-O1	2.298	0.347	Mo2-O1	2.371	0.285
Mo1-O4	2.327	0.321	Mo2-O4	2.400	0.263
Mo1-O8	1.802	1.328	Mo2-O7	1.943	0.907
Mo1-O9	1.727	1.626	Mo2-O11	1.887	1.055
Mo1-O10	1.72	1.657	Mo2-O12	1.702	1.740
Mo1-O11	2.025	0.726	Mo2-O13	1.704	1.730
BVS		6.008	BVS		5.983
Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
Mo3-O14	2.386	0.274	Mo4-O14	2.332	0.317
Mo3-O17	2.371	0.285	Mo4-O17	2.318	0.329
Mo3-O20	1.945	0.902	Mo4-O23	2.049	0.681
Mo3-O21	1.722	1.648	Mo4-O24	1.711	1.698
Mo3-O22	1.698	1.75	Mo4-O25	1.723	1.644
Mo3-O23	1.864	1.123	Mo4-O26	1.804	1.320
BVS		5.993	BVS		5.991
Bond	Bond length/Å	Value	Bond	Bond length/Å	Value
V1-O2	2.007	0.499	V2-O15	2.047	0.439
V1-O2 ⁱ	2.007	0.499	V2-O15 ⁱⁱ	2.047	0.439
V1-05	2.034	0.455	V2-O18	2.021	0.471
V1-O5 ⁱ	2.034	0.455	V2-O18 ⁱⁱ	2.021	0.471
V1-08	1.933	0.598	V2-O26	1.941	0.585
V1-08 ⁱ	1.933	0.598	V2-O26 ⁱⁱ	1.941	0.585
BVS		3.088	BVS		2.994

 Table S3 Bond valence sums for compounds 2 7

Symmetry transformations used to generate equivalent atoms: i: 2-x, 1-y, 1-z; ii: 1-x, 2-y, -z.

Reference

- 1 Bruker, A. X. S. Inc., APEX3 Package, APEX3, SAINT and SADABS, Madison, Wisconsin, USA, 2016.
- 2 (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341; (b) G. M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3-8.
- 3 J. D. Compain, A. Dolbecq, J. Marrot, P. Mialane, F. Sécheresse. C. R., Chimie. 2010, **13**, 329-335.
- X. Y. Yin, H. X. Bi, H. Song, J. Y. He, Y. Y. Ma, T. T. Fang and Z. G. Han, Photoactive hourglass-type M{P₄Mo₆}₂ networks for efficient removal of hexavalent chromium, *Polyoxometalates*, 2023, 2, 9140027.
- 5 W. Z. Chen, X. F. Yi, J. Zhang and L. Zhang, Heterometallic Mo–Ti oxo clusters with metal–metal bonds: Preparation and visible-light absorption behaviors, *Polyoxometalates*, 2023, **2**, 9140013.
- 6 J. Wang, L. Wang, C. Y. Liu, Y. Wang, F. Ye, W. Yan and B. Liu, Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage, *Nano Res.*, 2023, 16, 9267-9272.
- 7 N. E.Brese, M. O'Keeffe, Acta Crystallogr. Sect. B 1991, 47, 192-197

5 Catalytic Oxidation of Sulfides

In a 10 mL Schlenk tube, the substrate (0.2 mmol) was dissolved in CH_3CN (2 mL), then catalyst and H_2O_2 (0.8 mmol, 30% aqueous) were added into the solution at 80 °C for 12 h. After the reaction, separate the catalyst from the reaction mixture by centrifugation. The crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 3:1-8:1).

6 Characterization of the products

Dibenzothiophene sulfone (2a)

Conversion 95%, Selectivity 99%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H).

Diphenyl sulfone (2b)

Conversion 86%, Selectivity 99%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 4H), 7.56 (t, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 4H).

Methyl phenyl sulfone (2c)

Conversion 99%, Selectivity 95%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 8.0 Hz, 2H), 3.06 (s, 3H).

4-Methylsulfuryl chlorobenzene (2d)

Conversion 99%, Selectivity 87%, off-white solid. 1H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 1H), 3.06 (s, 3H).

Methyl p-tolyl sulfone (2e)

Conversion 70%, Selectivity 97%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 3.04 (s, 3H), 2.46 (s, 3H).

(4-Methoxyphenyl)methylsulfone (2f)

Conversion 82%, Selectivity 99%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 9.2 Hz, 2H), 3.89 (s, 3H), 3.03 (s, 3H).

Thianaphthene-1,1-dioxide (2g)

Conversion 79%, Selectivity 91%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.2 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.52 (t, J = 6.4 Hz, 1H), 7.36 (d, J = 6.4 Hz, 1H), 7.22 (d, J = 7.2 Hz, 1H), 6.72 (d, J = 6.8 Hz, 1H).

3-Methylbenzo[b]thiophene dioxide (2h)

Conversion 65%, Selectivity 95%, white solid. 1H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.0 Hz, 1H), 7.60 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 6.47 (s, 1H), 2.28 (s, 3H).

Methyl phenyl sulfone (2c)

Methyl p-tolyl sulfone (2e)

Thianaphthene-1,1-dioxide (2g)

