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Experimental Sections

Characterization. 

The morphologies of the synthesized samples were characterized by field emission 

scanning electron microscopy (FE-SEM) (S-3400, Hitachi, Japan), transmission 

electron microscopy (TEM) and high-resolution transmission electron microscopy 

(HRTEM) (JEM-2100, JEOL, Japan) at an accelerating voltage of 200 kV. X-ray 

diffraction (XRD) (D/max-2200VPC, Rigaku, Japan) was performed to determine the 

crystal structures of materials under Cu Kα radiation (40 kV, 30 mA) with a scanning 

range of 10–90 at a speed of 5 min-1. Surface element chemical compositions were 

analyzed by X-ray photoelectron spectroscopy (XPS) (PHI5700, Thermo Electron 

Corporation, USA) using non-monochromatic Al X-rays as the primary excitation. N2 

adsorption–desorption isotherms and pore-size distributions were studied using a 

nitrogen adsorption analyzer (ASAP2020, Micromeritics, USA). UV-vis diffuse 

reflectance spectra (UV-vis DRS) of samples were recorded using a double-beam 

ultraviolet–visible spectrophotometer (TU-1901, Beijing General Instrument Co., Ltd., 

China) using BaSO4 as a reference in the scan range of 200–800 nm. UV-vis spectra 

were acquired using a UV-vis spectrophotometer (TU-1900, Beijing General 

Instrument Co., Ltd., China). Photoluminescence (PL) spectra of solid powders were 

measured using a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies, 

Australia). Fourier transform infrared (FT-IR) spectra were obtained using a Fourier-

transform infrared spectrometer (iS10, Nicolet, USA) scanning from 4000–400 cm1 

with a resolution of 4 cm-1. The glass tube was then inserted into the ESR cavity and 
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was irradiated under a 300 W Xenon lamp, and the spectra were recorded at selected 

times. Electron spin resonance (ESR) spectra were recorded at room temperature using 

a Bruker A200 EPR spectrometer with center field at 3398 G and X-band microwave 

frequency of 9.45 GHz. The intermediates formed during the photocatalytic reaction of 

TC over BCs-Bi2WO6 was examined using a liquid chromatography-mass spectrometry 

(LCMS) coupled with a mass spectrometer (Waters Micromass Q-TOFMicro). 

Electrochemical impedance spectra (EIS) and photocurrent transient response (I-t) were 

measured in a three-electrode system on an electrochemical workstation (CHI660E, 

Shanghai, China). Na2SO4 aqueous solution (0.50 M) was used as the electrolyte. A Pt 

plate and Ag/AgCl electrode were used as the counter and reference electrode, 

respectively, while working electrodes were prepared by spreading a slurry of the as-

prepared photocatalyst onto fluorine-doped tin oxide (FTO) glass.

Preparation of Bi2WO6

0.5 mmol Bi(NO3)3·5H2O and 0.5 mmol Na2WO4·2H2O were weighed and 

dispersed in 30 mL of ethylene glycol solution and stirring for 30min. The stirred 

solution was transferred to a hydrothermal reactor and reacted at 140 ℃ for 14 h. The 

reacted precipitate is collected and washed and dried. 

Synthesis of BiOI

2 mmol of Bi(NO3)3·5H2O and 2 mmol of KI were weighed and dispersed in 30 

mL of ethylene glycol. Meanwhile, the dispersed solution was stirred for 30 min. The 

stirred solution was transferred to a hydrothermal reactor at 140 ℃ and reacted for 14 

h. The reacted precipitate is collected and washed and dried.
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Synthesis of BC

BCs were prepared using high-temperature carbonization and alkaline activation 

methods. Firstly, wash, dry, and crush the corncob to obtain corncob powder. Then pre 

carbonize the corn cob powder at 450 °C for 2 h (with a heating rate of 5 ℃·min-1) and 

continuously introduce N2 protection to obtain pre carbonized corn cob charcoal. Then 

mix pre carbonized corn cob charcoal and KOH in a mass ratio of 1:4, and carbonize at 

900 ℃ for 1 h (heating rate of 5 ℃·min-1). Finally, wash and dry the above samples 

with concentrated H2SO4 to obtain BCs.

Adsorption model

Adsorption kinetics: using the pseudo-first-order model (Eq(S1)) and the pseudo-

second-order model (Eq(S2)) to predict the adsorption mechanism of tetracycline (TC) 

on the catalyst surface. The procedure of the adsorption kinetics experiment was as 

follows: Take 10 mg of catalyst and added it to 100 mL of TC (50 mg L-1), and stirred 

at 298 K. The decisive step model of catalyst adsorption of TC was fitted by the Intra-

particle diffusion model (Eq(S3))

pseudo-first-order model

(S1) 𝑞𝑡 =  𝑞𝑒(1 ‒ 𝑒
𝑘1𝑡

)

Where qt is the adsorption capacity of TC at t (min), k1 (min-1) is the rate constant of 

pseudo-first-order model.

pseudo-second-order model

(S2)
𝑞𝑡 =

𝑞2
𝑒𝐾2𝑡

1 + 𝑞𝑒𝐾2𝑡

Where k2 is the rate constant of the pseudo-second-order model.
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Intra-particle diffusion model

(S3)𝑞𝑡 = 𝑘dif 𝑡
0.5 + 𝐶

Where kdif (mg g-1 min1/2) is the rate constant of the intra-particle diffusion model, and 

C (mg·g-1) is the thickness of the boundary layer.

S-5



Fig. S1. (a-c) SEM images and (d-f) TEM images of BCs. (g-I) TEM images of 

Bi2WO6.
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Table S1. BET surface parameters of Ni@C/ZCS samples.

Surface parameters

Samples BET surface area

(m2 g-1)

Pore volume

(cm3 g-1)

Pore diameter

(nm)

BiOI 15.40 0.04 34.56

Bi2WO6 29.64 0.08 14.13

BWI0.2 61.69 0.18 27.64

BC 2598.30 1.21 2.38

BC/BWI0.1 1640.73 0.94 2.55

BC/BWI0.2 1760.00 1.04 2.60

BC/BWI0.3 1962.42 1.15 2.57

BC/BWI0.4 2358.99 1.37 2.49
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Table S2. Kinetic parameters of BC/BWI for removal of tetracycline

Pseudo-first-order model Pseudo-second-order model
Adsorbates Samples qe,exp(mg g-1)

qe,cal(mg g-1) K1(min-1) R2 ARE qe,cal(mg g-1) K2(g mg-1 min-1) R2 ARE

BC/BW 267.27 315.52 0.089 0.994 2.86 268.20 3.51×10-4 0.999 0.42

BC/BWI0.1 233.69 286.17 0.078 0.995 2.35 237.09 3.10×10-4 0.999 0.63

BC/BWI0.2 227.09 271.58 0.087 0.991 3.07 229.96 3.92×10-4 0.998 1.12

BC/BWI0.3 234.79 256.14 0.078 0.876 15.13 237.03 3.11×10-4 0.999 0.52

Tetracycline

BC/BWI0.4 202.59 240.22 0.090 0.992 2.96 204.24 4.70×10-4 0.998 0.82
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Table S3. Intra-particle diffusion parameters of BC/BWI for removal of tetracycline

Intra-particle diffusion parameters
Adsorbates Samples kdif 1(mg g-1 

min1/2) C1 R2 ARE kdif 2(mg g-1 
min1/2) C2 R2 ARE

BC/BW 40.96 31.72 0.971 3.94 4.43 232.63 0.976 0.14

BC/BWI0.1 38.28 9.24 0.994 1.56 5.29 193.60 0.878 0.47

BC/BWI0.2 37.63 15.28 0.996 1.99 2.91 204.59 0.999 0.01

BC/BWI0.3 38.95 6.87 0.989 1.75 6.61 183.98 0.981 0.22

Tetracycline

BC/BWI0.4 32.54 19.72 0.994 2.77 2.53 183.14 0.989 0.07
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Fig. S2. (a-c) Degraded tetracycline mass spectrometry.
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Table S4. Comparison of adsorption- photocatalysis capacity of tetracycline.
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