Metallic tin nanodots inducing interfacial adsorption-insertion mechanism for carbon nano-honeycombs with enhanced sodium storage

Xuepeng Ni¹, Kunming Li¹, Xin Wang², Xian Zhao³, Dong Li¹, Huifang Chen¹, Qilin Wu¹*, Anqi Ju¹* and Meifang Zhu¹

¹ College of Materials Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
² Songshan Lake Materials Laboratory, Dongguan 523808, China
³ Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States

Corresponding author:
Name: Anqi Ju
E-mail: anqiju@163.com
Experiment section

Materials

Cyanuric acid (CA) was purchased by Bide Pharmatech Ltd., Shanghai, China. Melamine (MA), glucose and ethanol were commercially supplied by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. The SnCl\textsubscript{4}·5H\textsubscript{2}O and Dimethyl sulfoxide (DMSO) were obtained from Aladdin reagent (Shanghai) Co., Ltd., China. All chemicals were directly used without any further purification.

Preparation of N-doped carbon nano-honeycombs modulated by metallic tin nanodots

Both MA (3.0 g) and SnCl\textsubscript{4}·5H\textsubscript{2}O (3.0 g) were dissolved in 120 mL of DMSO under sonication to form solution A, and CA (3.2 g) was dissolved in 60 mL of DMSO under sonication to form solution B. Then, the solution A and B were mixed directly and stirred for 10 min to obtain a white precipitate at room temperature. Finally, the white precipitate was collected by centrifugation, washed with DMSO, H\textsubscript{2}O and ethanol several times, and dried at 60 °C in a vacuum overnight to obtain a white powder with Sn (denoted as 3-Sn-MCA). The mixture consisting of the as-prepared 3-Sn-MCA and glucose (4:1, wt%/wt%) was transformed to the tubular furnace for heating at 150 °C for 2 h, and followed by carbonization at 900 °C for 1 h with a heating rate of 2 °C/min to achieve carbon nano-honeycombs modulated by metallic tin nanodots (denoted as 3-Sn/N-CNs) under nitrogen atmosphere during the whole process.

For comparison, the various N-doped carbon nanocages anodes modified with Sn nanodots were prepared by adjusting the SnCl\textsubscript{4}·5H\textsubscript{2}O added mass. The mass of SnCl\textsubscript{4}·5H\textsubscript{2}O added was 0 g, 2.1 g, 4.0 g and 5.0 g to get N-doped carbon nano-honeycombs anodes modulated by metallic tin nanodots and other procedure was similar with 3-Sn/N-CNs, the resultants were named as N-CNs, 2-Sn/N-CNs, 4-Sn/N-CNs and 5-Sn/N-CNs, respectively.

Structural and Morphological Characterization

Both the field emission scanning electron microscope (FESEM, SU-8010) and high-resolution transmission electron microscope (HRTEM, JEM-2100F) were used to
analyze the morphology and microstructure of three as-prepared samples. The structure, surface chemical species, and degree of graphitization and defects of all the samples were measured by X-ray diffraction (XRD, Rigaku D/max 2550 V diffractometer), X-ray photoelectron spectroscopy (XPS, Escalab 250Xi) and Raman spectroscopy (inVia-Reflex), respectively. The nitrogen adsorption-desorption isotherms and pore size distribution of the samples were achieved using the fully automatic specific surface area and pore size tester (Micro ASAP2046) at 77 K.

Electrical and Electrochemical Measurements

The electrochemical measurements of N-CNs and 3-Sn/N-CNs were performed in CR2032 coin-type cells. The 80 wt% active materials, 10 wt% super P and 10 wt% polyvinylidene difluoride (PVDF) binder were absolutely dissolved in N-methyle-2-pyrrolidone (NMP) solvent, and pasting the obtained homogeneous slurry onto the copper foil. Then the copper foil coated with active materials was transferred to the vacuum oven at 60 °C for 12 h and was cut into many copper pieces with a diameter of 12 mm as the working electrode. The specific capacity was calculated according to the total mass of the active materials. Both the sodium metal and glass fiber (GF/D, from Whatman) served as the counter electrodes and the separator, respectively. The applied electrolyte was 1 M NaPF$_6$ dissolved in dimethyl ether (DME). Cyclic voltammograms (CV) test (0.01-2 V, vs Na/Na$^+$) was carried out with distinct scan rates by using an electrochemical workstation (Ivium-V01320). The battery tester (LAND-CT2001A) was employed to test the cycling and rating performance of three samples at various current densities (0.01-2 V, vs Na/Na$^+$). Electrochemical impedance spectra (EIS) were characterized with a frequency range between 100 kHz and 0.01 Hz by using an electrochemical workstation (Ivium-V01320). For full cells preparation, the 3-Sn/N-CNs anode is pre-sodiated in a half-cell for 5 cycles at 0.1 A/g in voltage range of 0.01–3 V to ensure the formation of a stable solid electrolyte interphase film. Then the Na$_3$V$_2$(PO$_4$)$_3$O$_2$F is used as cathode to assemble the sodium-ion full cell. The electrolyte and separator are the same as above.
Fig. S1. (a-b) SEM images of N-CNs.

Fig. S2. SEM images of 2-Sn/N-CNs (a-b), 4-Sn/N-CNs (c-d) and 5-Sn/N-CNs (e-f).
Fig. S3. The TGA curve of 3-Sn/N-CNs.

Fig. S4. (a) XRD pattern and (b) Raman spectra of 2-Sn/N-CN, 3-Sn/N-CN, 4-Sn/N-CN and 5-Sn/N-CN.

Fig. S5. (a) N$_2$ adsorption-desorption isotherms and (b) the pore-size distribution curves of 2-Sn/N-CN, 3-Sn/N-CN, 4-Sn/N-CN and 5-Sn/N-CN.
Fig. S6. XPS survey spectra of 2-Sn/N-CNs, 3-Sn/N-CNs, 4-Sn/N-CNs and 5-Sn/N-CNs.

Fig. S7. High-resolution XPS spectra of 3-Sn/N-CNs: (a) C 1s, (b) O 1s.

Fig. S8 The cycling performance at 0.1 A/g of the 2-Sn/N-CNs, 3-Sn/N-CNs, 4-Sn/N-CNs and 5-Sn/N-CNs.
Fig. S9 The galvanostatic discharge/charge profiles of (a) N-CNPs and (b) 3-Sn/N-CNPs at various current densities.

Fig. S10 The SEM images of 3-Sn/N-CNPs after cycles.

Fig. S11. The capacitive contribution ratio of 3-Sn/N-CNPs at different scan rates.
Fig. S12 Electrochemical impedance spectra of both N-CNs and 3-Sn/N-CNs at 283.15 K (a), 293.15 K (b) and 303.15 K (c). Based on the equivalent circuit exhibited in the inset of (a-c), the fitted lines (solid lines) were achieved.

Table S1. Comparison of the 3-Sn/N-CNs anode with recently reported carbon anodes for sodium-ion half cells.

<table>
<thead>
<tr>
<th>Materials</th>
<th>current density (A/g)</th>
<th>capacity (mA h/g)</th>
<th>cycling</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>5</td>
<td>200</td>
<td>5000</td>
<td>1</td>
</tr>
<tr>
<td>NCNFs-IWNC800</td>
<td>5</td>
<td>146</td>
<td>5000</td>
<td>2</td>
</tr>
<tr>
<td>3D-PC-800</td>
<td>5</td>
<td>120</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>NP-HPCS</td>
<td>5</td>
<td>120</td>
<td>5000</td>
<td>4</td>
</tr>
<tr>
<td>CC700</td>
<td>1</td>
<td>105</td>
<td>8000</td>
<td>5</td>
</tr>
<tr>
<td>N-HC</td>
<td>5</td>
<td>101.4</td>
<td>10000</td>
<td>6</td>
</tr>
<tr>
<td>S-N/C a</td>
<td>1.0</td>
<td>211</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>HARC800</td>
<td>1</td>
<td>119</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>WSC-1000</td>
<td>1</td>
<td>182</td>
<td>1500</td>
<td>9</td>
</tr>
<tr>
<td>NS-CNRs-700</td>
<td>1</td>
<td>230</td>
<td>3000</td>
<td>10</td>
</tr>
<tr>
<td>NPCs-4</td>
<td>5</td>
<td>251.3</td>
<td>10000</td>
<td>This work</td>
</tr>
</tbody>
</table>

Table S2. Transfer resistances (R_{ct}) and activation energy of both N-CNs and 3-Sn/N-CNs.

<table>
<thead>
<tr>
<th>Samples</th>
<th>283.15 K (Ω)</th>
<th>293.15 K (Ω)</th>
<th>303.15 K (Ω)</th>
<th>Activation energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-CNs</td>
<td>53.82</td>
<td>36.7</td>
<td>16.54</td>
<td>59.3</td>
</tr>
<tr>
<td>3-Sn/N-CNs</td>
<td>29.08</td>
<td>16.09</td>
<td>5.48</td>
<td>41.9</td>
</tr>
</tbody>
</table>
References

