Supplementary Materials

Dry Approach Production of Garnet Solid Electrolyte Membrane for Lithium Batteries

Qiulin Li^a, Yiqiu Li^b, Hao Chen^a, Hui Liu^a, Lianjie Li^a, Jie Song^{*c}, Maowen Xu^{a*}, Shu-Juan Bao^{a*}

^aKey Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China

^bTai'an Faraday Energy Technology Co., Ltd, Taian, Shandong 271000, P. R. China

^cShandong Zero One Four Advanced Materials Co., Ltd Taian, Shandong 271000, P.

R. China

*Corresponding authors.

E-mail addresses: <u>baoshj@swu.edu.cn</u> (S. J. B); <u>xumaowen@swu.edu.cn</u>; <u>songjie@014am.com</u>.

Fig. S1 The XRD of PTFE powder

Fig. S2 Infrared spectroscopy of PTFE, LLZTO and PTFE-LLZTO membrane.

Fig. S3 a) The XRD of LLZNO and PTFE-LLZNO electrolyte membrane; b) The picture of LLZNO; c) The SEM of the cross-sectional of PTFE-LLZNO electrolyte membrane; d)The EDS mapping of Fig. c.

Fig. S4 a) The XRD of LALZO and PTFE-LALZO electrolyte membrane; b) The picture of LALZO; c) The SEM of the cross-sectional of PTFE- LALZO electrolyte membrane; d)The EDS mapping of Fig. c.

Fig. S5 Load Displacement Curve of PTFE-LLZTO Membrane

Fig. S6 The SEM of PTFE@LLZTO powder

Fig. S7 a) The picture of PTFE-LLZTO electrolyte membrane by ball mill to obtain the PTFE-LLZTO matrix; b) the SEM of PTFE-LLZTO matrix by a ball mill

Fig. S8 The EIS of PTFE-LLZTO electrolyte membrane with different content PTFE.

Fig. S9 The EIS of PTFE-LLZTO membrane with (a) and without (b) pre mixing at different locations on the same membrane.

Fig. S10 Schematic diagram of Li+ transport channel for PTFE-LLZTO membrane at discharge. Li⁺ is expected to have three transmission channels, LLZTO, Interface, LLZTO-Interface-LLZTO ("Interface" is the interface of liquid electrolytes (LEs) and LLZTO.

Fig. 11 The interfacial EIS of Li/PTFE-LLZTO with different content PTFE

Fig. S12 The EIS of PTFE-LLZTO-3-35 μm and PP

Fig. S12 The interfacial EIS of PTFE-LLZTO-3 and PP with Li

Fig. 13 XPS spectroscopy of a) C1s, b) O1s and c) F1s on Li anode of Li/PTFE-LLZTO/Li and Li/PP/Li after 20 hours of cycling, XPS spectroscopy of a) Ta5f, b) La3d and c) Zr3d on Li anode of Li/PTFE-LLZTO/Li after 20 hours cycling.

Fig. S14 a) The XRD pattern of LiFePO₄; b) The SEM image of LiFePO₄