

Supplementary Information

Highly dispersed ultra-small RuO₂ nanoparticles on NiO nanosheets arrays as efficient pH-universal hydrogen evolution electrocatalysts

Dongdong Du^a, Yiyun Du^b, Yongjun Feng^a, Dianqing Li^{a,*}, and Pinggui Tang^{a,*}

^a State Key Laboratory of Chemical Resource Engineering, and Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, P.R. China

^b State Nuclear Electric Power Planning Design & Research Institute Co., Ltd., State Nuclear Power Technology Corporation: SPIC, Beijing 100095, China

*Corresponding authors.

E-mail addresses: lidq@mail.buct.edu.cn (D. Li), tangpg@mail.buct.edu.cn (P. Tang).

1. Experimental

1.1. Reagents

Ruthenium chloride trihydrate ($\text{RuCl}_3 \cdot 3\text{H}_2\text{O}$), sodium chloride (NaCl), nickel chloride hexahydrate ($\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$), hydrochloric acid (HCl), ethanol ($\text{C}_2\text{H}_6\text{O}$) and urea were analytically pure and purchased from Sinopharm Chemical Reagent Co., Ltd. Nickel foam (NF) with a thickness of 1.6 mm was obtained from Suzhou Taili Materials Technology Co., Ltd.. Deionized water was used for the preparation of solutions.

1.2. Synthesis of $\text{RuO}_2/\text{NiO}_2/\text{NF}$ nanosheet array

Typically, a piece of NF with size of $4.0 \times 5.0 \text{ cm}^2$ was treated in a 6 M HCl solution for 15 min to remove the nickel oxide layer, and then sonicated in ethanol and deionized water for 15 min, respectively, followed by washing with deionized water for several times. $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ (0.16 mmol), $\text{RuCl}_3 \cdot 3\text{H}_2\text{O}$ (0.08 mmol) and NaCl (0.163 mol) were dissolved in 80 mL of deionized water to form a solution with magnetic stirring. A piece of cleaned NF was immersed into the solution and the reaction was carried out in a water bath shaker at 80 °C for 6 h. The obtained $\text{RuO}_2/\text{Ni(OH)}_2/\text{NF}$ nanosheet array was washed with deionized water and ethanol for several times before drying at room temperature, and was named as $\text{Ni}_2\text{Ru(OH)}_x$. Precursors of $\text{Ni}_0\text{Ru(OH)}_x$, $\text{Ni}_1\text{Ru(OH)}_x$, $\text{Ni}_3\text{Ru(OH)}_x$, $\text{Ni}_4\text{Ru(OH)}_x$ and Ni(OH)_2 were also synthesized by changing the Ni : Ru molar ratio to be 0 : 1, 1 : 1, 3 : 1, 4 : 1 and 1 : 0, respectively, according to the same method. The obtained precursors were subsequently calcined at

300 °C for 1 h at air atmosphere in a muffle oven to prepare catalysts of Ni_0RuO_x , Ni_1RuO_x , Ni_2RuO_x , Ni_3uO_x , Ni_4RuO_x and NiO , respectively.

1.3. Synthesis of RuO_2 and Pt/C

The powdered RuO_2 was prepared by a precipitation method using KOH as the precipitant. Typically, 1.0 mL KOH (1.0 M) solution was added dropwise into 100 mL of RuCl_3 solution (0.01 M) under magnetic stirring, followed by aging at 100 °C for 45 min. The precipitates were collected and washed with deionized water for several times and dried at 60 °C for 12 h. For comparison, RuO_2 and commercial Pt/C catalysts were prepared by drop-casting their powdered forms on NF as follows: 10.0 mg of catalyst powder was dispersed into a mixture consisting of 10 μL of Nafion solution and 990 μL of ethanol/water solution with volume ratio of 1 : 1 by ultrasonic treatment for 60 min to form a homogeneous ink. Subsequently, 200 μL of catalyst ink was loaded on a piece of NF ($1 \times 1 \text{ cm}^2$) with a mass loading of 2 mg cm^{-2} at room temperature.

1.4. Characterizations

The XRD patterns of the catalysts were recorded using an X-ray diffractometer with Ni-filtered Cu- $\text{K}\alpha$ radiation (Rigaku D/max-Ultima III). The morphology and structure of the catalysts were characterized by a scanning electron microscope (Zeiss Supra 55) and a high-resolution transmission electron microscopy (JEOL JEM-2010 with an accelerating voltage of 200 kV). The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive spectroscopy (EDS) mapping analyses were executed on a JEOL JEM-2014 electron

microscopy (Tokyo, Japan). The X-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCALAB 250 X-ray photoelectron spectrometer using Al-K α radiation. The inductively coupled plasma atomic emission spectra (ICP-AES) were used to determine the content of Ru element in the catalysts.

1.5. Electrochemical Measurements

The electrochemical measurements was performed in a conventional three-electrode cell in a water bath at 25 °C. The RuO₂/NiO/NF nanosheet array was tailored into size of 1 × 1 cm² and used as the working electrode for the HER tests. A Hg/HgO electrode served as the reference electrode in 1.0 M KOH (pH=14) while Hg₂Cl₂(s)|Hg(l) was used in 0.5 M H₂SO₄ (pH=0) and 1.0 M PBS (pH=7), and a graphite rod served as the counter electrode. The potential was normalized to reversible hydrogen electrode (RHE) by the following Nernst equations.

$$1.0 \text{ M KOH: } E_{\text{vs.RHE}} = E_{\text{vs.Hg/HgO}} + E_{\text{vs.Hg/HgO}}^{\theta} + 0.8274$$

$$0.5 \text{ M H}_2\text{SO}_4: E_{\text{vs.RHE}} = E_{\text{vs.Hg}_2\text{Cl}_2/\text{Hg(l)}} + E_{\text{vs.Hg}_2\text{Cl}_2/\text{Hg(l)}}^{\theta}$$

$$1.0 \text{ M PBS: } E_{\text{vs.RHE}} = E_{\text{vs.Hg}_2\text{Cl}_2/\text{Hg(l)}} + E_{\text{vs.Hg}_2\text{Cl}_2/\text{Hg(l)}}^{\theta} + 0.4137$$

All electrolytes were bubbled with Ar for 30 min before HER measurements. The working electrodes were first activated by cyclic voltammetry (CV) scans till stabilization with a scan rate of 50 mV s⁻¹. The linear-sweep voltammetry (LSV) curves were recorded at a scan rate of 5 mV s⁻¹ with 90% iR-correction to compensate the resistances drops, and the current density was normalized to the geometric area. Electrochemical impedance spectroscopy (EIS) measurements were performed by using an AC voltage with 10 mV amplitude in the frequency range of 100000-0.01 Hz.

The long-term durability was tested by CV scans for 3000 cycles with a scan rate of 100 mV s⁻¹, and the long-term stability was evaluated by chronoamperometry at 100 mA cm⁻² for 200 h.

The electrochemically active surface area

The electrochemically active surface area (ECSA) was measured by double-layer charging (C_{dl}). The potential was set between 0.2 V to 0.30 V vs RHE ten time at different scan rates of 5 mV s⁻¹, 10 mV s⁻¹, 15 mV s⁻¹, 20 mV s⁻¹, 25 mV s⁻¹, 30 mV s⁻¹. By plotting $\Delta J = (J_a - J_c)/2$ against the scan rate, C_{dl} was obtained from the slope. The specific capacitance value for a flat standard with 1 cm² of real surface area seen generally as in the range of 20-60 μ F cm⁻², most using the 40 μ F cm⁻².^{1, 2} The electrochemically active surface area (ECSA) was converted from the specific capacitance value by

$$A_{ECSA} = \frac{C_{dl}}{C_s} = \frac{C_{dl}}{40 \mu F cm^{-2}}$$

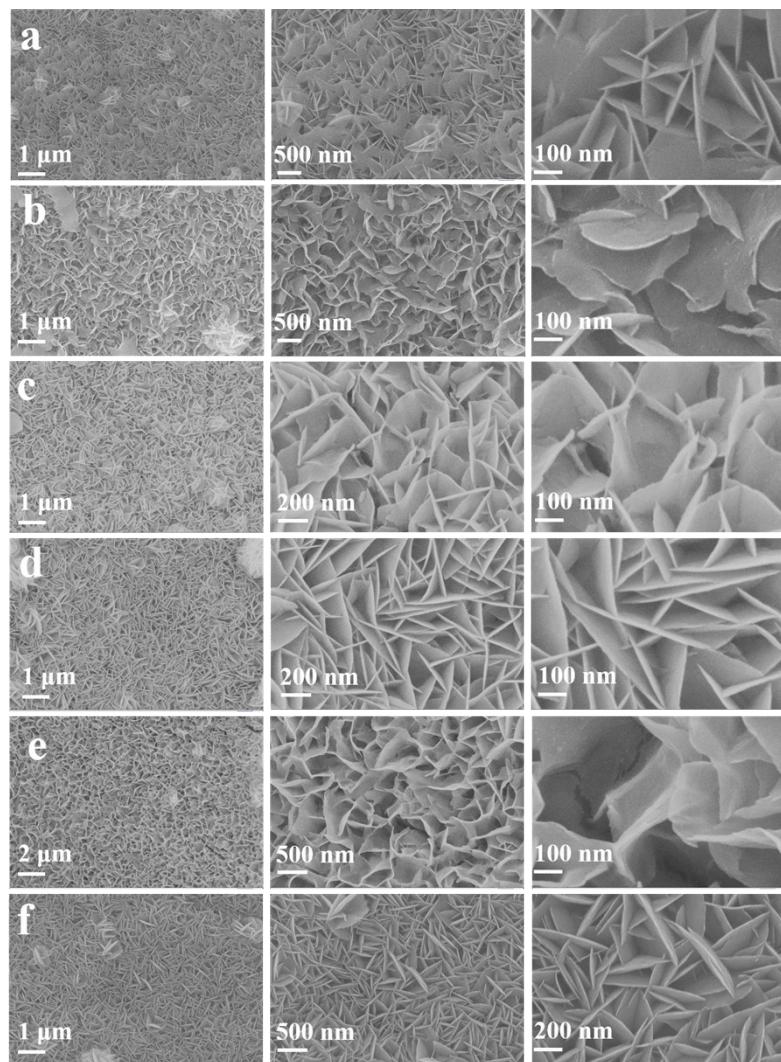
Faradaic efficiency

And the Faradaic efficiency was obtained by the ratio of the volume of experimentally gas to volume calculated theoretically at the current density of 200 mA cm⁻², and theoretical gas volume was calculated by the following equation:^{3, 4}

$$\eta = (V_{\text{experimental}}/V_{\text{theoretical}}) \times 100\%$$

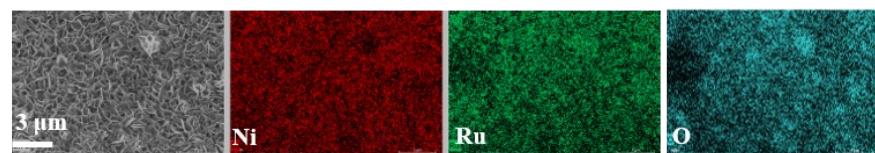
$$V_{\text{theoretical}} = ItV_m/nF$$

η is Faradaic efficiency; F is Faraday's constant (96485.33 C mol⁻¹) , n is the amount of substance (mol); V is the gas volume (L); V_m is the molar volume of gas mol⁻¹; I is current (A); t is time (min).


TOF

It is noting that the TOF calculations are roughly accurate because the number of active sites and the nature of active sites were not definite. TOF is calculated based on the assumption that RuO_2 acts as the active site,^{5,6} because Ni_2RuO_x show excellent activity far more than NiO . TOF values was calculated by the following formula:

$$\text{TOF}(\text{s}^{-1}) = \frac{\text{total hydrogen turnover/geomrtric area (cm}^2\text{)}}{\text{active sitres/geomrtric area (cm}^2\text{)}}$$


$$\text{TOF}(\text{s}^{-1}) = \frac{\text{A} \times |\text{J}|}{2 \times \text{F} \times \text{n}}$$

where J (A cm^2) is the current density at a given overpotential, A (1 cm^2) is geometric surface area of the working electrode, F is Faraday constant (96485 C mol¹), n is the number of the active site.

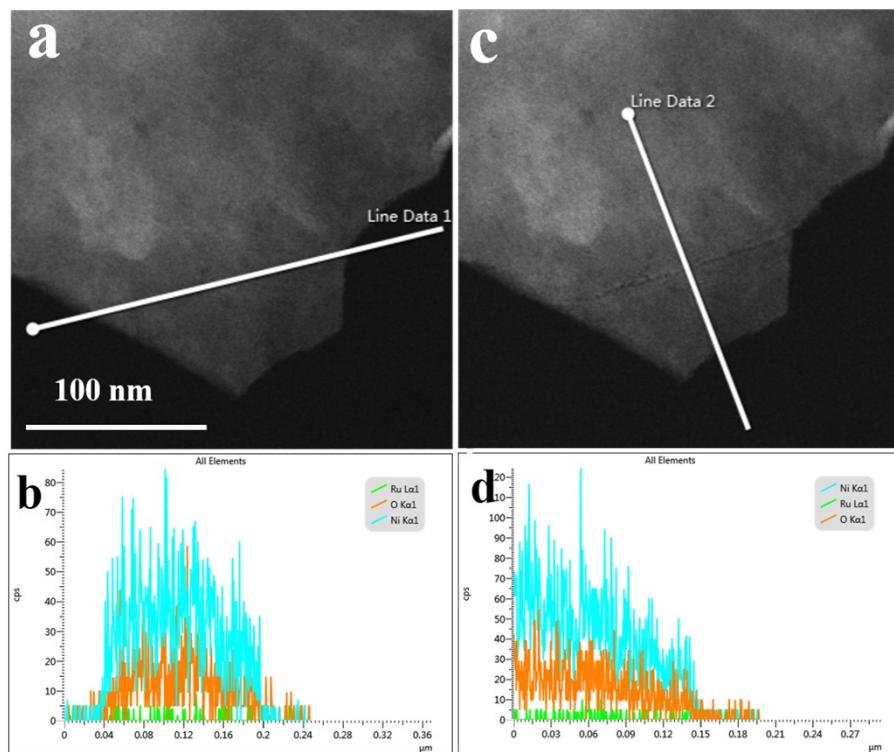
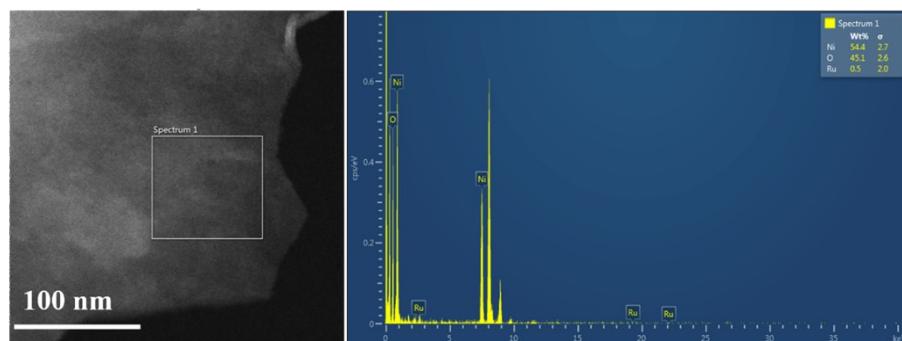
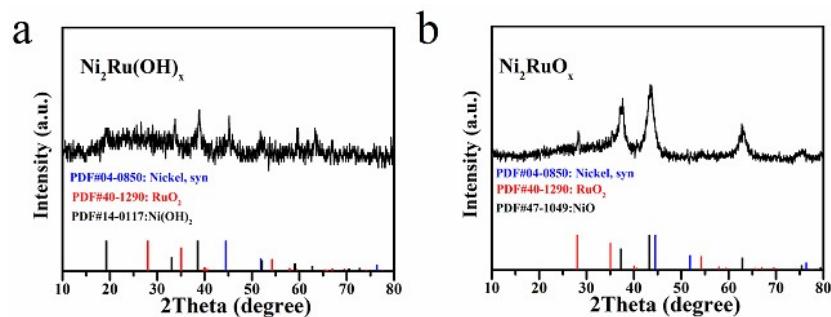
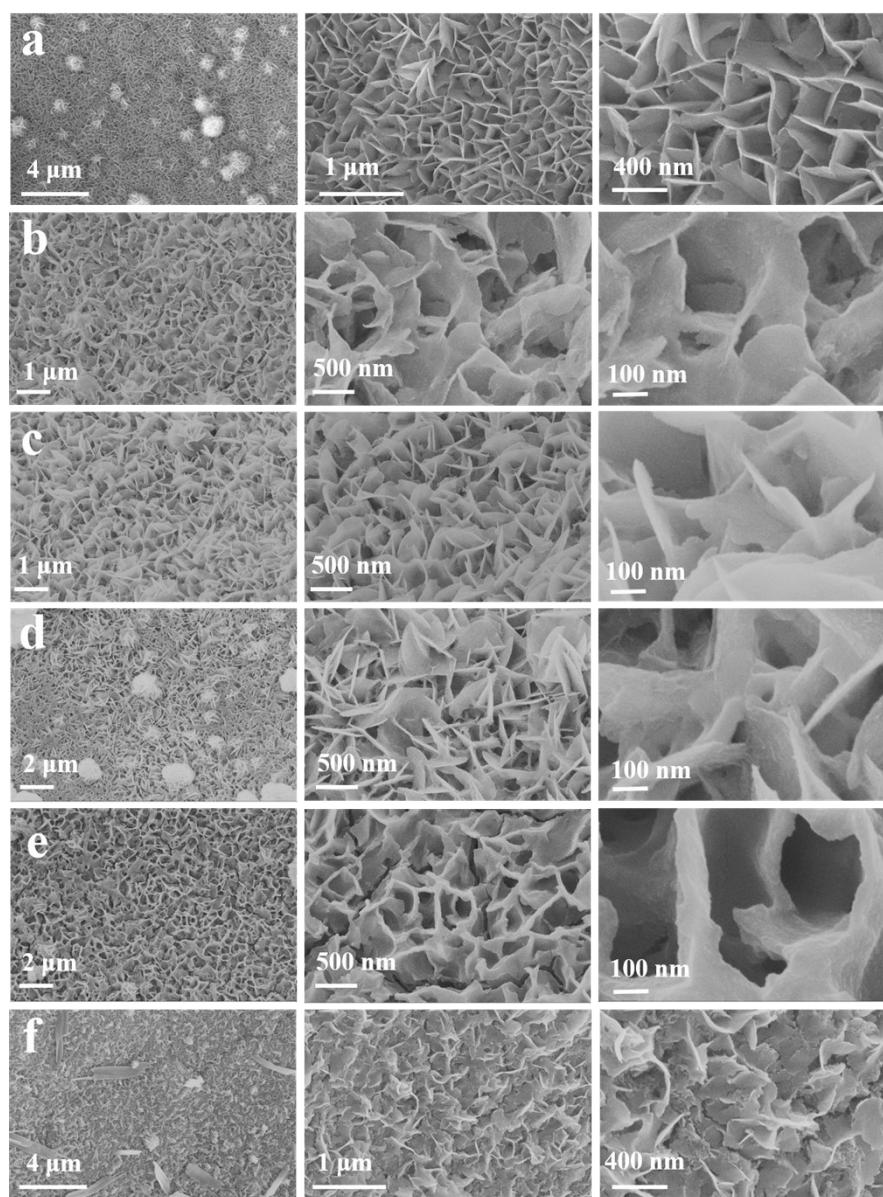
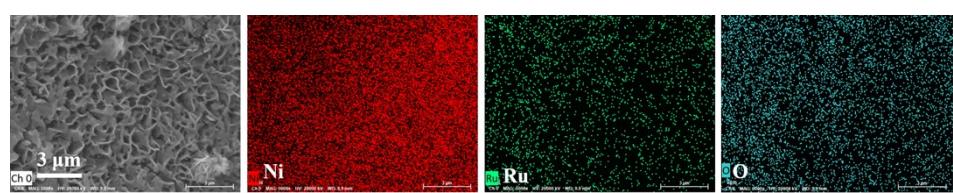


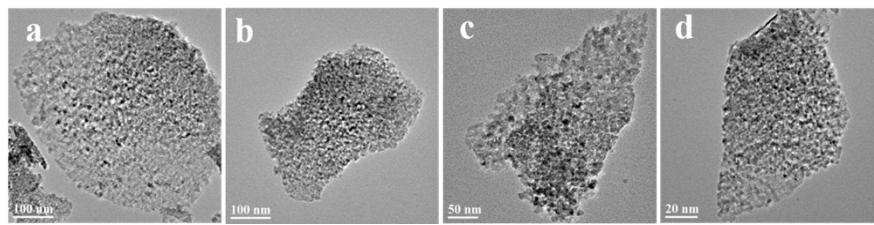
Figure S1. SEM images of a) Ni₀Ru(OH)_x, b) Ni₁Ru(OH)_x, c) Ni₂Ru(OH)_x, d) Ni₃Ru(OH)_x, e)

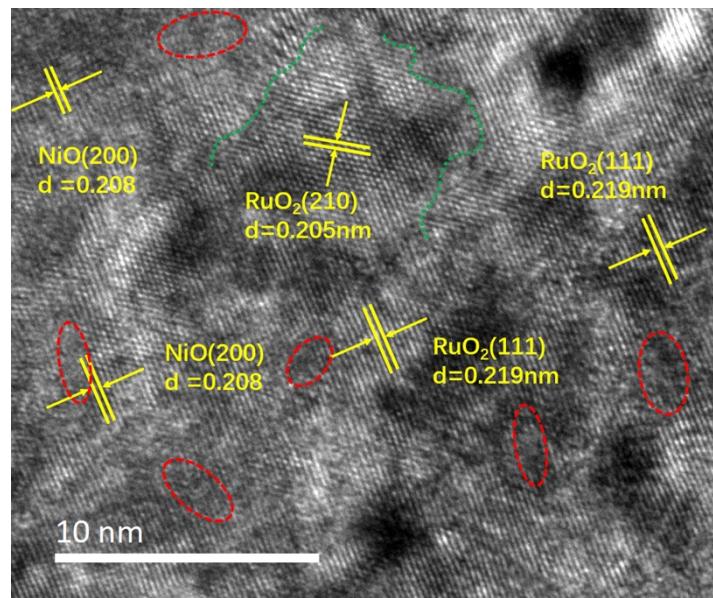

Ni₄Ru(OH)_x and f) Ni(OH)₂.

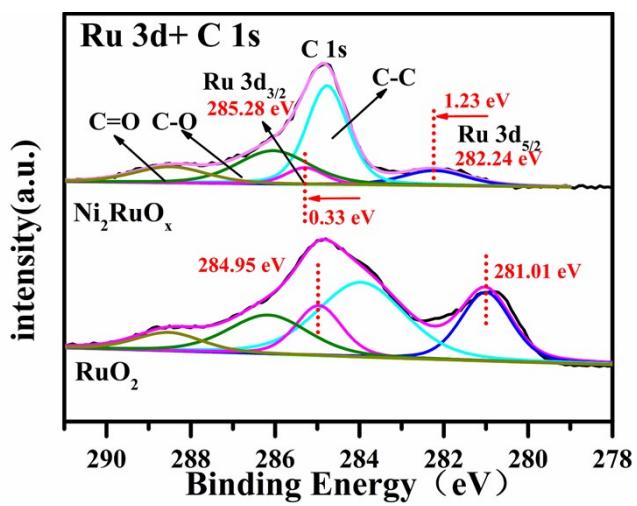

Figure S2. SEM images and elemental mapping of Ni₂Ru(OH)_x.

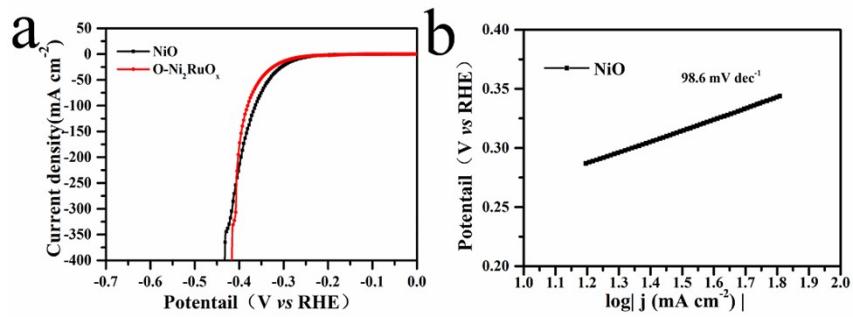

Figure S3. (a, c) HAADF-STEM image and (b, d) corresponding linear scanning curves of $\text{Ni}_2\text{Ru}(\text{OH})_x$, respectively.

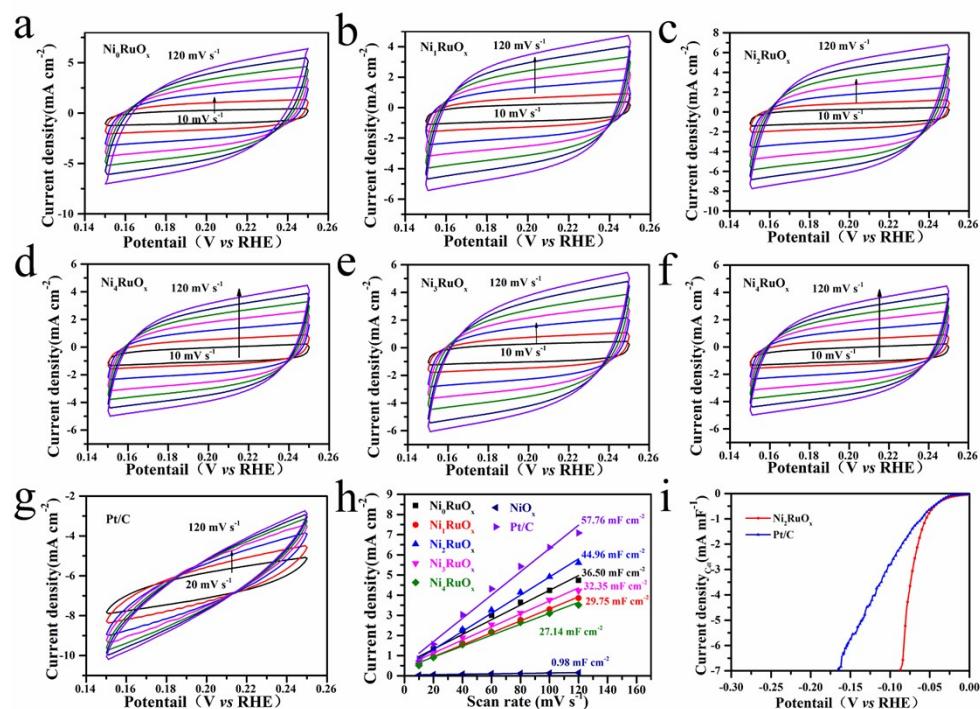

Figure S4. EDS spectrum of $\text{Ni}_2\text{Ru}(\text{OH})_x$.

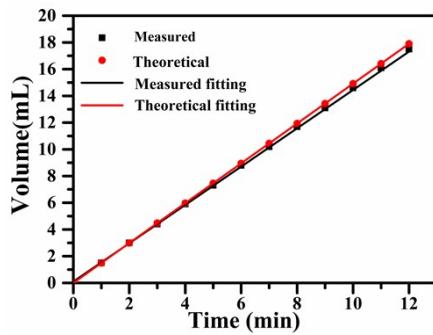

Figure S5. a) XRD pattern of $\text{Ni}_2\text{Ru}(\text{OH})_x$ and b) Ni_2RuO_x .


Figure S6. SEM images of a) Ni_0RuO_x , b) Ni_1RuO_x , c) Ni_2RuO_x , d) Ni_3RuO_x , e) Ni_4RuO_x and f) NiO .


Figure S7. SEM image with elemental mapping of Ni_2RuO_x .


Figure S8. TEM images of Ni_2RuO_x .


Figure S9. HRTEM images of Ni_2RuO_x .


Figure S10. XPS spectra of Ru 3d+C1s of Ni_2RuO_x .

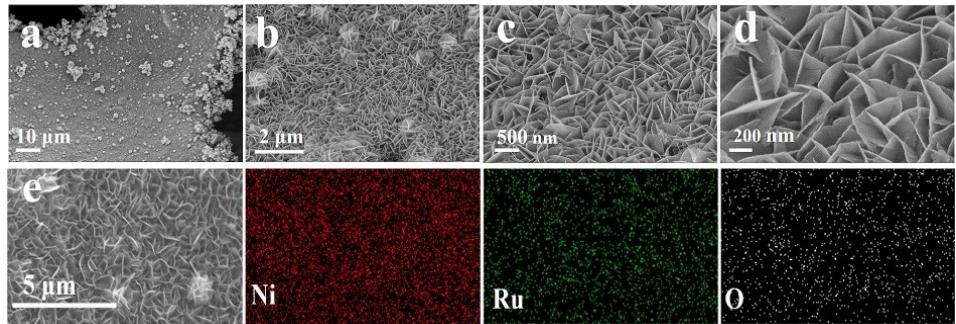

Figure S11. a) The iR-corrected polarization curves of catalysts measured in 1.0 M KOH and b) the corresponding Tafel plots of NiO.

Figure S12. CV curves of a) Ni₀RuO_x, b) Ni₁RuO_x, c) Ni₂RuO_x, d) Ni₃RuO_x, e) Ni₄RuO_x, f) NiO, and g) Pt/C; h) Current density differences plotted against scan rates of catalysts; i) Polarization curves of normalized by C_{dl} in 1M KOH.

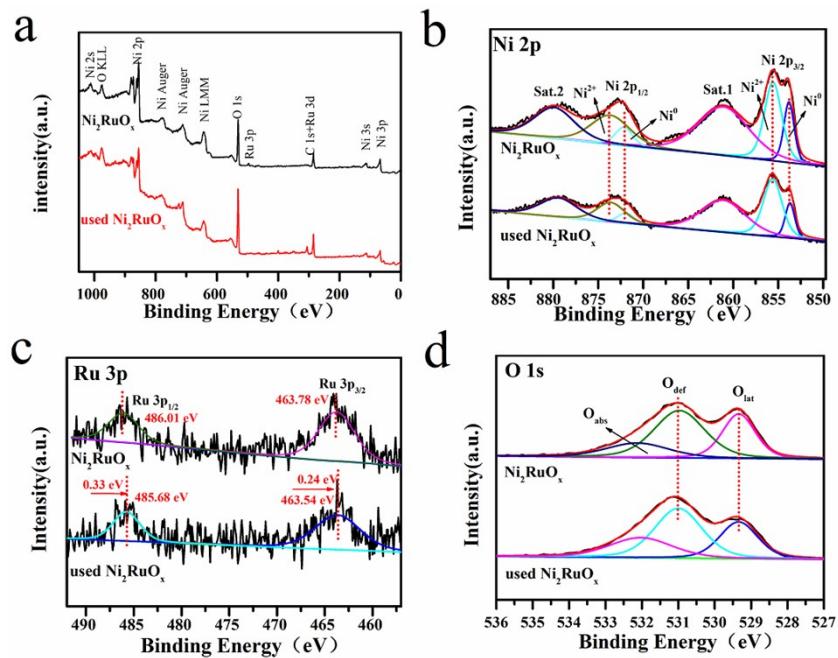


Figure S13. Faradaic efficiency of Ni_2RuO_x in 1M KOH.

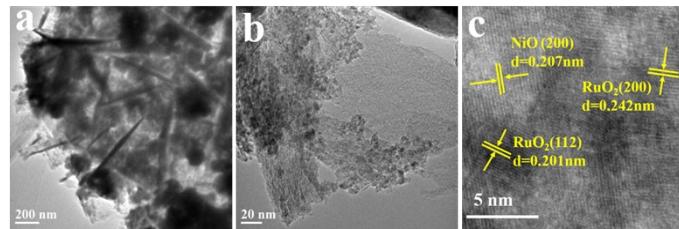


Figure S14 a-d) SEM images and e) mapping of Ni_2RuO_x after 200 h test at initial current

density of 100 mA cm^{-2} in 1M KOH.

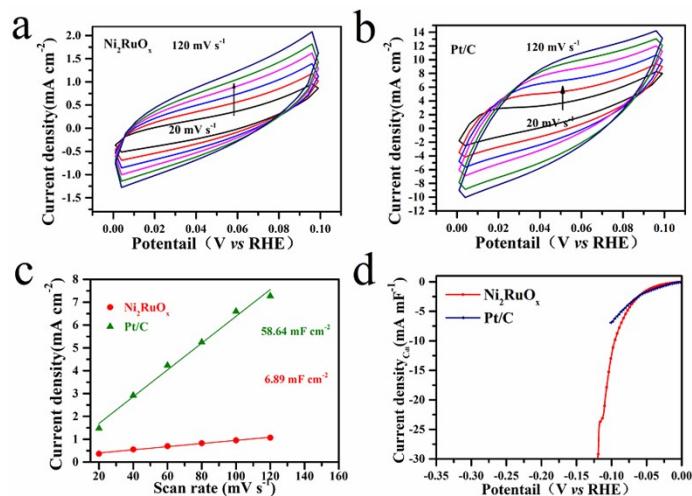
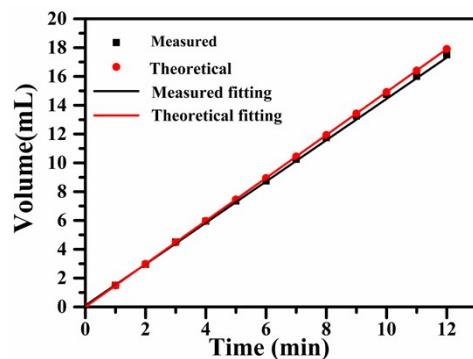


Figure S15. XPS spectra of before and 200 h test at initial current density of 100 mA cm^{-2} in 1M KOH: a) overall XPS survey spectra, b) XPS spectra of Ni 2p, c) XPS spectra of Ru 3p and d) XPS spectra of O 1s.


Figure S16. a-b) TEM images, c) HRTEM images of Ni_2RuO_x after 200 h test at initial current

density of 100 mA cm^{-2} in 1M KOH.

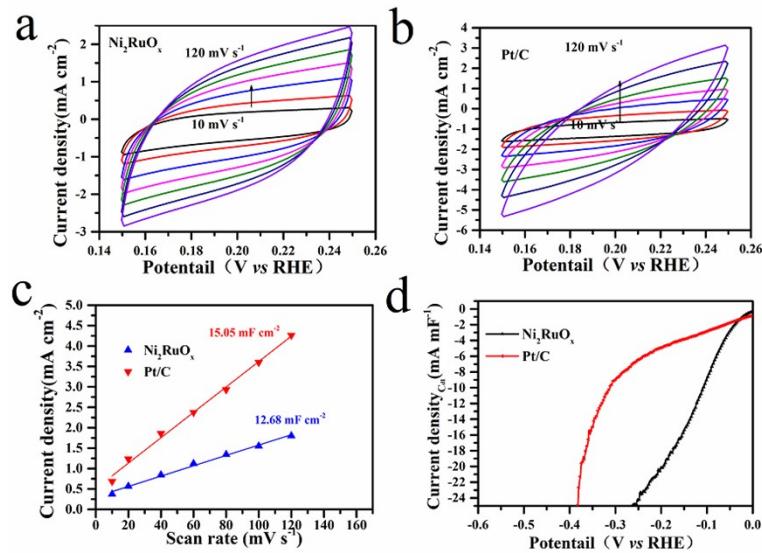


Figure S17. CV curves of a) Ni_2RuO_x and b) Pt/C; c) Current density differences plotted against

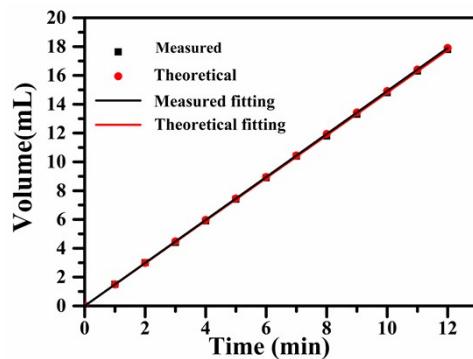

scan rates of catalysts; d) Polarization curves of normalized by C_{dl} in 0.5M H_2SO_4 .

Figure S18. Faradaic efficiency of Ni_2RuO_x in 0.5M H_2SO_4 .

Figure S19. CV curves of a) Ni_2RuO_x and b) Pt/C; c) Current density differences plotted against scan rates of catalysts; d) Polarization curves of normalized by C_{dl} in 1M PBS

Figure S20. Faradaic efficiency of Ni_2RuO_x in 1M PBS.

Table S1. Comparison of reported electrocatalysts for HER in 1 M KOH electrolyte

Catalysts	Catalyst amount (mg cm ⁻²)	Electrode area (cm ²)	J (mA cm ⁻²)	η (vs RHE)	Reference
Ni₂RuO_x	0.165 (Ru)	1	10	31 mV	
			100	66 mV	This work
			300	84 mV	
NiFe ₂ O ₄ /NiFe LDH	2.8	0.25	10	101 mV	ACS Appl. Mater. Interfaces, 2018 , 10, 26283-26292
			100	229 mV	
			500	297 mV	
			750	314 mV	
Ni _{cluster} -Ru NWs	0.25	0.196	10	194 mV	Energy Environ. Sci, 2021 , 14, 3194
NiMoO _x /NiMoS		1	10	38 mV	Nat. Commun, 2020 , 11, 5462
			100	89 mV	
			500	174 mV	
			1000	236 mV	
Ni-Fe NP	2.5	-	10	46 mV	Nat. Commun, 2019 , 10, 5599
h-NiMoFe	0.15	-	10	14 mV	Energy Environ. Sci, 2021 , 14, 4610-4619
			100	~ 50 mV	
			500	74 mV	
			1000	98 mV	
NiMoN@NiFeN		1	100	84 mV	Nat. Commun, 2019 , 10, 5106
			500	180 mV	
Ni ₂ P/NiTe ₂		-	10	62 mV	Energy Environ. Sci, 2020 , 13, 1799-1807
			100	143 mV	
Ni@NCNT/NiM N/NF	41.3	1	10	15 mV	J. Mater. Chem. A, 2019 , 7, 13671–13678
			100	~120 mV	
			300	~180 mV	
Pt–Ni NTAs	1.516	-	10	23 m V	Energy Environ. Sci, 2021 , 14, 1594
			200	71 mV	

NiO/Ru@Ni	-	-	10	39 mV	J. Mater. Chem. A, 2019 , 7, 2344
Fe-Ni ₃ S ₂ /NF	4~6	-	10	47 mV	ACS Catal, 2018 , 8,
			100	232 mV	5431-5441
NF@Fe ₂ -Ni ₂ P/C	0.5	0.5	10	39 mV	ACS Catal, 2019 , 9,
			100	~80 mV	8882-8892
			300	~95 mV	
			1000	183 mV	
CoO _x -RuO ₂ /NF	0.138% wt(Ru)	0.4	50	51 mV	ACS Sustainable Chem. Eng, 2020 , 8, 47
			100	~100 mV	
			300	~120 mV	
			1500	215 mV	
Ni ₃ N-VN/NF	1	1	10	73 mV	Adv. Mater, 2019 , 31,
			100	320 mV	1901174
CuNi@NiFeCu	1	1	10	98 mV	Appl. Catal. B Environ., 2021 , 298, 120600
			100	~280 mV	
			300	300 mV	
C-350	0.35	0.25	10	47mV	ACS Sustainable Chem. Eng, 2020 , 8, 7414-7422
Ni@Ni ₂ P-Ru HNRs	0.35	0.07065	10	31 mV	J. Am. Chem. Soc, 2018 , 140, 2731-2734
50				~ 200 mV	
Ru@CN-0.16	3.14 % wt(Ru)	0.19625	10	32 mV	Energy Environ. Sci, 2018 , 11, 800
50				~135 mV	
Ru ₂ Ni ₂ SNs/C	-	-	10	40 mV	Nano Energy, 2018 , 47, 1–7
			20	55 mV	
RuP ₂ @NPC	0.1	0.07065	10	52 mV	Angew. Chem. Int. Ed, 2017 , 56, 11559–11564
			50	~ 115 mV	
Ni-Co-P HNBs	2	1	10	107 mV	Energy Environ. Sci, 2018 , 11, 872–880
			100	187 mV	
Ni-P-B/NF	0.5	50	50	76 mV	Energy Environ. Sci, 2020 , 13, 102–110
		500	500	251 mV	
hydrous RuO ₂	0.52	1	10	60 mV	Chem. Phys. Lett. 2017 ,

			100	184 mV	673, 89–92
Cu@NiFe LDH	2.2	-	10	116 mV	Energy Environ. Sci,
			100	192 mV	2017 , 10, 1820–1827
Ni-Fe-K _{0.23} MnO ₂	2	1	10	114 mV	Small, 2020 , 16,
CNFs-300			100	244 mV	1905223
			300	343 mV	
NiCo ₂ O ₄ @NiMo ₂ S ₄	2.6	0.785	10	157 mV	Adv. Mater. Interfaces,
			100	289 mV	2019 , 6, 1901308
			300	343 mV	
Pt-SL/TiO ₂	0.00286	0.1767	10	205 mV	Small, 2021 , 17,
					2100732
CoP@Ni ₂ P	4	0.25	10	16 mV	Appl. Catal. B Environ.,
			100	85 mV	2021 , 296, 120350
			300	~150 mV	

Table S2. Comparison of reported electrocatalysts for HER in 0.5 M H₂SO₄ electrolyte

Catalysts	Catalyst amount (mg cm ⁻²)	Electrode area (cm ²)	J (mA cm ⁻²)	η (vs RHE)	Reference
Ni ₂ RuO _x	0.165 (Ru)	1	10	18 mV	
			100	95 mV	This work
			300	253 mV	
NiMo-NGTs	2	0.07065	10	65 mV	ACS Nano, 2016 , 10,
			100	205 mV	10397–10403
Ni@Ni ₂ P–Ru	-	0.07065	10	51 mV	J. Am. Chem. Soc, 2018 ,
			50	~100 mV	140, 2731–2734
PtLa@KB	-	0.07065	10	38 mV	Small, 2021 , 17, 2102879
			100	100 mV	
ECM@Ru	-	-	10	63 mV	Adv. Energy Mater, 2020 ,
			50	102 mV	10, 2000882
[Ru(SA)+Ru(NP)]	-	0.07065	10	10 mV	Adv. Energy Mater, 2019 ,

@RuNx@GN]/GN					9, 1900931
Ru _{0.10} @2HMoS ₂	-	-	10	147 mV	Appl. Catal. B Environ.,
			200	~250 mV	2021 , 298, 120490
1Ni-0.5Mo ₂ C/GNS	0.38	1	10	50 mV	Journal of Catalysis, 2020 ,
			100	57 mV	388, 122-29
			300	~85 mV	
Ru@C ₂ N	0.285	0.07065	10	13.5 mV	Nature Nanotechnology, 2017 , 12, 441-446
Ru SAs–Ni ₂ P	-	0.196	10	125 mV	Nano Energy, 2021 , 80,
			100	~200 mV	105467
Ru _x Fe _y P-NC _s /CNF	0.36	0.07065	10	151 mV	Appl. Catal. B Environ.,
			100	242 mV	2021 , 283, 119583
Ni _{cluster} –Ru	0.25	0.196	10	20 mV	Energy Environ. Sci, 2021 , 14, 3194–3202
N-Co-S/G	-	0.196	10	120 mV	Nano Energy, 2021 , 80,
			50	~110 mV	105544
Ru-SA/Ti C ₂ T _x	3.5wt%	0.196	10	70 mV	Small, 2020 , 16, 2002888
RuCu NSs/C	5	0.196	10	19 mV	Angew. Chem. Int. Ed, 2019 , 58, 13983 –13988
Ir-SA@Fe@NCNT	0.283	0.0765	10	26 mV	Nano Lett, 2020 , 20,
			500	~340 mV	2120–2128
Ir-NR/C	0.283	0.0765	10	28 mV	Appl. Catal. B Environ.,
			50	~90 mV	2020 , 279, 119394
RuIrZnO	0.01	0.049	10	12 mV	Nat. Commun, 2019 , 10, 4875
RuIr-NC	0.05	0.196	10	46 mV	Nat. Commun, 2021 , 12, 1145
NiVB/rGO	0.56	0.0765	10	146 mV	Journal of Energy
			50	~300 mV	Chemistry, 2021 , 58, 237-246
S-MoP NPL	-	0.785	10	85 mV	ACS Catal, 2019 , 9,
			100	~160 mV	651–659
MoS ₂ /NLG-3	0.293	0.15	10	110 mV	ACS Catal. 2021 , 11,

			20	179 mV	4486–4497
			100	~190 mV	
Ir NWs	0.204	0.196	10	15 mV	Adv. Funct. Mater, 2018 , 28, 1803722

Table S3. Comparison of reported electrocatalysts for HER in 1 M PBS electrolyte

Catalysts	Catalyst amount (mg cm ⁻²)	Electrode area (cm ²)	<i>j</i> (mA cm ⁻²)	<i>η</i> (vs RHE)	Reference
Ni₂RuO_x	0.165 (Ru)	1	10	16 mV	
			100	131 mV	This work
			300	289 mV	
Ru _{0.10} @2HMoS ₂	-	-	10	137 mV	Appl. Catal. B Environ., 2021 , 298, 120490
			50	~255 mV	
Ir-NSG	0.3	-	10	22 mV	Nat. Commun, 2020 , 11, 4246
Ir-NR/C	0.283	0.0765	10	86 mV	Appl. Catal. B Environ., 2020 , 279, 119394
			50	~300 mV	
S-MoP NPL	-	0.785	10	142 mV	ACS Catal, 2019 , 9, 651–659
MoS ₂ /NLG-3	0.293	0.15	10	142 mV	ACS Catal, 2021 , 11, 4486–4497
			20	167 mV	
			100	~200 mV	
CoP/Co-MOF	5	-	10	49 mV	Angew.Chem. Int.Ed, 2019 , 58,4679-4684
			100	~140 mV	
Ni-Ni _x	-	0.25	10	64 mV	J. Am. Chem. Soc, 2017 , 139, 12283-12290
			100	~210 mV	

MoP700	0.25	0.196	10 100	196 mV ~225 mV	ACS Catal, 2019 , 9, 8712-8718
Ni _{0.1} Co _{0.9} P	0.58	-	10	125 mV	Angew. Chem. Int. Ed, 2018 , 57, 15445-15449
Ni _{0.89} Co _{0.11} Se ₂	2.62	-	10 100	82 mV ~313 mV	Adv. Mater, 2017 , 29, 1606521
N-Co ₂ P/CC	2	0.196	10 20	42 mV ~160 mV	ACS Catal, 2019 , 9, 3744-3752
karst NF	0.5	0.25	10 100	110 mV ~310 mV	Energy Environ. Sci, 2020 , 13, 174-182
CoS _x -(0.2-0.02)-12	0.242	0.3	10 50	168 mV 282 mV	Adv. Funct. Mater, 2018 , 28, 1707244
Mn–NiO–Ni/Ni–F	0.25	-	10	80 mV	Energy Environ. Sci, 2018 , 11, 1898–1910
Hollow Ni(S _{0.5} Se _{0.5}) ₂	0.75	1	10 100	124 mV ~205 mV	J. Mater. Chem. A, 2019 , 7, 16793–16802
Ni ₁₂ P ₅ -Ni ₂ P	-	-	10 100	112 mV 162 mV	Appl. Catal. B Environ., 2021 , 282, 119609
np-Co ₉ S ₄ P ₄	1	-	10	87 mV	ACS Appl. Mater. Interfaces, 2019 , 11, 3880-3888
Cu _{0.08} Co _{0.92} P	5.17	-	10 50	81 mV 165 mV	Appl. Catal. B Environ., 2020 , 265, 118555
Co _{1-x} Fe _x P/CNT	0.5	0.5	10	105 mV	Adv. Funct. Mater, 2017 , 27, 1606635

REFERENCES

- (1) Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F., Designing An Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. *Energy Environ. Sci.* **2015**, *8*, 3022-3029.
- (2) Wang, X.-D.; Xu, Y.-F.; Rao, H.-S.; Xu, W.-J.; Chen, H.-Y.; Zhang, W.-X.; Kuang, D.-B.; Su, C.-Y., Novel Porous Molybdenum Tungsten Phosphide Hybrid Nanosheets on Carbon Cloth for Efficient Hydrogen Evolution. *Energy Environ. Sci.* **2016**, *9*, 1468-1475.
- (3) Li, D.; Xing, Y.; Yang, R.; Wen, T.; Jiang, D.; Shi, W.; Yuan, S., Holey Cobalt-Iron Nitride Nanosheet Arrays as High-Performance Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Appl. Mater. Interfaces* **2020**, *12*, 29253-29263.
- (4) Yu, T.; Xu, Q.; Qian, G.; Chen, J.; Zhang, H.; Luo, L.; Yin, S., Amorphous CoO_x -Decorated Crystalline RuO_2 Nanosheets as Bifunctional Catalysts for Boosting Overall Water Splitting at Large Current Density. *ACS Sustain. Chem. Eng.* **2020**, *8*, 17520-17526.
- (5) Wei, Y.; Zou, P.; Yue, Y.; Wang, M.; Fu, W.; Si, S.; Wei, L.; Zhao, X.; Hu, G.; Xin, H. L., One-Pot Synthesis of B/P-Co-Doped Co-Mo Dual-Nanowaffer Electrocatalysts for Overall Water Splitting. *ACS Appl. Mater. Interfaces* **2021**, *13*, 20024-20033.
- (6) Mishra, I. K.; Zhou, H.; Sun, J.; Qin, F.; Dahal, K.; Bao, J.; Chen, S.; Ren, Z., Hierarchical $\text{CoP}/\text{Ni}_5\text{P}_4/\text{CoP}$ Microsheet Mrrays as A Robust pH-Universal

Electrocatalyst for Efficient Hydrogen Generation. *Energy Environ. Sci.* **2018**, *11*, 2246-2252.