Supporting Information

Unraveling the effect of carbon morphology evolution in hard carbons on sodium storage performance

Huilan Suna, Qiaoyan Zhanga, Fei Yuana, Di Zhanga, Zhaojin Lia, Qijun Wanga, Huan Wanga,*, Bo Wanga,*

a Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, PR China.

Email: wangbo1996@gmail.com (B. Wang), wanghuantp@163.com (H. Wang)

* Corresponding author.
Supporting Information

Fig. S1 SEM and TEM images of CHC-T, (a, e) CHC-700, (b, f) CHC-1100, (c, g) CHC-1300 and (d, h) CHC-1500.
Fig. S2 Interlayer distance of CHC-T, (a) CHC-700, (b) CHC-1100, (c) CHC-1300 and (d) CHC-1500.
Fig. S3 The proportion of highly disordered domains, pseudo-graphitic domains and graphite-like domains for CHC-T.

Fig. S4 (a) N$_2$ adsorption–desorption isotherms, (b) pore size distribution curves.

Fig. S5 High-resolution C 1s, O 1s and N 1s XPS spectra of (a-c) CHC-700 and (d-f) CHC-1100.
Supporting Information

Fig. S6 Electron configurations for pyridinic N, pyrrolic N, and graphitic N.

Fig. S7 Rate performance images of (a) CHC-700, (b) CHC-1100, (c) CHC-1300 and (d) CHC-1500.

Fig. S8 Electrochemical performance images of (a) CHC-900, (b) CHC-1200 and (c) CHC-1400.
Fig. S9 Comparison of rate capability between CHC-1300 and ever reported carbon anode materials in literatures.

Fig. S10 CV curves at different scan rates, (a) CHC-700, (b) CHC-1100, (c) CHC-1300 and (d) CHC-1500.

Fig. S11 E vs. t profile for one GITT test. \(D_{Na^+} \) was predicted by the following equation:

\[
D = \frac{4}{\pi \tau} \left(\frac{n_m V_m}{s} \right)^2 \left(\frac{\Delta E_s}{\Delta E_r} \right)^2
\]

Where \(n_m \) is the amount of active substance of electrode material, \(V_m \) is the molar volume, and \(S \) represents geometric area. \(\Delta E_s \) and \(\Delta E_r \) can be obtained from the GITT curves.
Supporting Information

Table S1. Physical parameters of CHC-T from XRD

<table>
<thead>
<tr>
<th>Sample</th>
<th>θ (°)</th>
<th>$d_{(002)}$ (nm)</th>
<th>L_a (nm)</th>
<th>L_c (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC-700</td>
<td>22.9</td>
<td>0.388</td>
<td>1.86</td>
<td>1.03</td>
</tr>
<tr>
<td>CHC-1100</td>
<td>23.6</td>
<td>0.376</td>
<td>2.33</td>
<td>1.09</td>
</tr>
<tr>
<td>CHC-1300</td>
<td>24.3</td>
<td>0.365</td>
<td>2.84</td>
<td>1.14</td>
</tr>
<tr>
<td>CHC-1500</td>
<td>25.1</td>
<td>0.355</td>
<td>3.02</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Table S2. Specific surface area and pore diameter of CHC-T from BET

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2 g$^{-1}$)</th>
<th>d_{pore} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC-700</td>
<td>0.928</td>
<td>3.08</td>
</tr>
<tr>
<td>CHC-1100</td>
<td>9.068</td>
<td>3.17</td>
</tr>
<tr>
<td>CHC-1300</td>
<td>4.729</td>
<td>3.00</td>
</tr>
<tr>
<td>CHC-1500</td>
<td>4.490</td>
<td>3.44</td>
</tr>
</tbody>
</table>

References

