SUPPORTING INFORMATION

Mechanistic Studies on the Formation of Ternary Oxides by Thermal Oxidation of the Cubic Laves Phase CaAl₂

Elias C. J. Gießelmann, Stefan Engel, Johannes G. Volpini, Hubert Huppertz, Guido Kickelbick,* Oliver Janka*

Elias C. J. Gießelmann, Stefan Engel, Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany

Johannes G. Volpini, Hubert Huppertz, Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria

* **Corresponding authors: Oliver Janka,** Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany, e-mail: oliver.janka@uni-saarland.de **Guido Kickelbick,** Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany, e-mail: guido.kickelbick@uni-saarland.de

were simultaneously heated to 1273 K (\sim 15 K min ⁻¹) with a dwell time of 1 h.									
dwelling	phase contributions obtained by PXRD (mass%)								
time (h)	$Ca_{12}Al_{14}O_{33}$	$Ca_{12}Al_{14}O_{33}$ $CaAl_2O_4$ CaO Al_2O_3 $Al_$							
5	67.1	13.0	1.8	6.8	11.3				
5	63.1	20.7	1.9	7.5	6.8				
5	67.5	14.5	2.1	7.7	8.2				
5	65.0	17.6	1.7	7.4	8.3				
5	67.9	15.7	2.4	7.2	6.8				
average	66.1	16.3	2.0	7.3	8.3				

Table S1. Summary of the Rietveld fit results of the powder X-ray diffraction data collected from the samples oxidized in a muffle furnace in air. Five samples were simultaneously heated to 1273 K (\sim 15 K min⁻¹) with a dwell time of 1 h.

Table S2. Summary of the Rietveld fit results of the powder X-ray diffraction data collected from the sample repeatedly oxidized in a muffle furnace in air for 5 h. The sample was heated to 1273 K (\sim 15 K min⁻¹) with a dwelling time of 5h over the course of 100 h.

dwelling	phase contributions obtained by PXRD (mass%)						
time (h)	$Ca_{12}Al_{14}O_{33}$	$CaAl_2O_4$	CaO	Al_2O_3	Al		
5	70	12	1	10	7		
10	65	16	1	13	5		
15	59	20	1	16	4		
20	57	25	0	16	2		
25	51	31	0	16	2		
30	43	39	0	17	1		
35	39	44	0	16	1		
40	35	49	0	15	1		
45	31	54	0	14	1		
50	27	59	0	13	1		
55	23	64	0	13	0		
60	20	69	0	11	0		
65	16	74	0	10	0		
70	13	78	0	9	0		
75	11	80	0	9	0		
80	8	83	0	9	0		
85	6	87	0	7	0		
90	4	89	0	7	0		
95	2	91	0	7	0		
100	2	92	0	6	0		

Compound	space group	Ζ	E/unit cell (eV)	E/atom (eV)
Al ₂ O ₃	R3c	6	-236.03	-7.87
CaAl ₁₂ O ₁₉	$P6_3/mmc$	2	-498.75	-7.79
CaAl ₄ O ₇	$C2_{1}/c$	4	-367.80	-7.66
CaAl ₂ O ₄	$P2_{1}/c$	12	-632.88	-7.53
Ca ₅ Al ₆ O ₁₄	$Cmc2_1$	4	-741.48	-7.41
Ca ₁₂ Al ₁₄ O ₃₃	I 4 3d	4	-853.76	-7.36
Ca ₃ Al ₂ O ₆	$Pa\overline{3}$	24	-1908.38	-7.23
CaO	$Fm\overline{3}m$	4	-53.64	-6.71

Table S3. Summary of the quantum-chemical calculations on the DFT Level. The compounds are sorted by increasing Ca content.

Figure S1. (a) Unit cell and coordination polyhedra of the (b) Ca and (c) Al atoms in cubic CaAl₂ ($Fd\overline{3}m$, MgCu₂ type). Ca atoms are depicted in green, Al atoms as grey circles. Wyckoff positions and site symmetries are given.

Figure S2. ²⁷Al solid state MAS NMR for cubic CaAl₂ (MgCu₂ type). The experimental data is shown in black, the fit in green.

Figure S3. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: STA; heating rate: 20 K min⁻¹; dwelling time: 0 h; gas flow: 40 mL min⁻¹ Ar : 10 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), $Ca_3Al_2O_6$ (purple), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S3							
Source		Bruker D8 ADVANCE (laboratory X-ray)						
Temperature			R	Т				
Pressure			amb	oient				
Wavelengths		Cu <i>K</i> α ₁ a	and Cu <i>K</i> α ₂ : 154	1.0596 and 154.	4308 pm			
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	C3A1	_	—	_		
Space group	IĀ3d	$P2_{1}/c$	Pa3	Fm3m	$R\overline{3}c$	Fm3m		
<i>a</i> / pm	1197.86(2)	875.0(10)	1527.0(6)	405.27(1)	475.65(11)	482.04(6)		
<i>b</i> / pm	A	809.2(4)	а	A	а	а		
<i>c</i> / pm	A	1748.2(18)	а	A	1300.6(6)	а		
β / \circ	90	120.00(14)	90	90	90	90		
$V/ \text{ nm}^3$	1.7189	1.0720	3.5600	0.0666	0.2548	0.1120		
Ζ	4	12	24	4	6	4		
<i>d</i> -space range			0.85-14.35 Å	A (6-130° 2θ)				
χ^2			3.	30				
$R_{\rm p}$			6.	89				
$R_{ m wp}$			9.	32				
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors			$R_{wp} = \left(\frac{\sum w }{\sum k}\right)$	$\frac{ I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$				

Figure S4. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 20 K min⁻¹; dwelling time: 5 h; gas flow: 40 mL min⁻¹ Ar : 10 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refin	ement details f	or the data sho	wn in Figure S	4			
Source		Bruke	er D8 ADVANC	CE (laboratory)	(-ray)			
Temperature			R	Т				
Pressure			amb	oient				
Wavelengths		Cu Kα ₁ a	and Cu <i>K</i> α ₂ : 154	4.0596 and 154.	4308 pm			
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	C3A1	_	_	_		
Space group	I43d	$P2_{1}/c$	Pa3	Fm3m	R3c	Fm3m		
<i>a</i> / pm	1197.79(1)	875.7(3)	1526.78(4)	405.20(7)	476.01(3)	481.50(7)		
<i>b</i> / pm	а	a 809.05(18) a a a a						
<i>c</i> / pm	а	1745.4(6)	а	а	1299.66(14)	а		
β / \circ	90	119.99(4)	90	90	90	90		
$V/ \text{ nm}^3$	1.7184	1.0710	3.5590	0.0665	0.2550	0.1116		
Ζ	4	12	24	4	6	4		
<i>d</i> -space range			0.85-14.35 Å	A (6-130° 2θ)				
χ^2			3.	92				
$R_{\rm p}$			7.	08				
$R_{ m wp}$			9.	60				
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors			$R_{wp} = \left(\frac{\sum w }{\sum}\right)$	$\frac{ I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$				

Figure S5. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 5 K min⁻¹; dwelling time: 0 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refineme	ent details for the	data shown in Fi	gure S5				
Source	Bruker D8 ADVANCE (laboratory X-ray)							
Temperature			RT					
Pressure			ambient					
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm				
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃			
Abbreviation	C12A7	CA	C3A1	—	-			
Space group	I43d	$P2_{1}/c$	Pa3	Fm3m	$R\overline{3}c$			
<i>a</i> / pm	1197.87(11)	874.7(9)	1522.5(3)	405.32(8)	476.00(3)			
<i>b</i> / pm	а	a 809.9(3) a a a						
<i>c</i> / pm	а	1746.8(19)	а	а	1300.27(18)			
β / \circ	90	120.00(13)	90	90	90			
V/ nm^3	1.7188	1.0720	3.5290	0.0666	0.2551			
Ζ	4	12	24	4	6			
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)				
χ^2			6.39					
R _p			8.28					
$R_{ m wp}$			11.20					
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors		R_{wp}	$f_{0} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$				

Figure S6. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 10 K min⁻¹; dwelling time: 0 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refineme	ent details for the	data shown in Fi	gure S6				
Source	Bruker D8 ADVANCE (laboratory X-ray)							
Temperature			RT					
Pressure			ambient					
Wavelengths		Cu <i>K</i> α ₁ and Cu	Kα ₂ : 154.0596 an	d 154.4308 pm				
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃			
Abbreviation	C12A7	CA	C3A1	_	_			
Space group	IĀ3d	$P2_{1}/c$	Pa3	Fm3m	R3c			
<i>a</i> / pm	1197.86(1)	874.5(13)	1522.0(6)	405.33(6)	476.01(3)			
<i>b</i> / pm	а	a 810.5(4) a a a						
<i>c</i> / pm	а	1747(3)	а	а	1300.28(18)			
β / \circ	90	119.99(16)	90	90	90			
V/ nm^3	1.7187	1.0730	3.5260	0.0666	0.2552			
Ζ	4	12	24	4	6			
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)				
χ^2			4.24					
R _p			6.75					
$R_{ m wp}$			8.94					
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$				

Figure S7. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: STA; heating rate: 20 K min⁻¹; dwelling time: 0 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), $Ca_3Al_2O_6$ (purple), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refin	ement details f	or the data sho	wn in Figure S	7		
Source		Bruke	er D8 ADVANC	CE (laboratory Σ	(-ray)		
Temperature			R	Т			
Pressure			amb	oient			
Wavelengths		Cu <i>K</i> α ₁ a	and Cu <i>K</i> α ₂ : 154	1.0596 and 154.	4308 pm	-	
Chemical	$C_{2} = A_{1} = O_{2}$	CaAl ₂ O	$Ca_{2}Al_{2}O_{4}$	Δ1	A12O2	CaO	
formula	Ca ₁₂ A1 ₁₄ O ₃₃	CaAl ₂ O ₄	Ca3AI2O6	- Al	AI203	CaO	
Abbreviation	C12A7	CA	C3A1	_	_	_	
Space group	I 4 3d	$P2_{1}/c$	$Pa\overline{3}$	$Fm\overline{3}m$	$R\overline{3}c$	$Fm\overline{3}m$	
<i>a</i> / pm	1198.00(2)	874(2)	1526.5(4)	405.31(1)	1300.7(3)	482.01(2)	
<i>b</i> / pm	а	811.8(6)	а	а	а	а	
<i>c</i> / pm	а	1750(6)	а	а	475.93(5)	а	
β / \circ	90	120.0(4)	90	90	90	90	
$V/ \text{ nm}^3$	1.7194	1.0756	3.5570	0.0666	0.2552	0.1120	
Ζ	4	12	24	4	6	4	
<i>d</i> -space range			0.85-14.35 Å	A (6-130° 2θ)			
χ^2			1.	85			
$R_{\rm p}$			7.	15			
$R_{\rm wp}$			9.	10			
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$						
factors							
			$R_{\text{max}} = \left(\frac{\sum w }{\sum w }\right)$	$\frac{1}{ I_0 - I_c ^2} \right)^2$			
				$\sum wI_0^2 $ /			

Figure S8. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: STA; heating rate: 40 K min⁻¹; dwelling time: 0 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), $Ca_3Al_2O_6$ (purple), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refin	ement details f	or the data sho	wn in Figure S	8			
Source		Bruke	er D8 ADVANC	E (laboratory X	(-ray)			
Temperature			R	Т				
Pressure			amb	vient				
Wavelengths		Cu $K\alpha_1$ a	and Cu <i>K</i> α ₂ : 154	4.0596 and 154.	4308 pm			
Chemical	CavaAluOm	CaAlaO	CasAlaOr	Δ1	A12O2	CaO		
formula	Ca ₁₂ A1 ₁₄ O ₃₃	CaAl ₂ O ₄		AI	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	C3A1	_	_	_		
Space group	I 4 3d	$P2_{1}/c$	$Pa\overline{3}$	$Fm\overline{3}m$	$R\overline{3}c$	$Fm\overline{3}m$		
<i>a</i> / pm	1197.92(1)	874.8(12)	1526.2(2)	405.35(1)	475.90(6)	481.96(5)		
<i>b</i> / pm	а	a 809.9(4) a a a a						
<i>c</i> / pm	а	1748(3)	а	а	1300.9(4)	а		
β / \circ	90	120.00(16)	90	90	90	90		
$V/ \text{ nm}^3$	1.7190	1.0720	3.5552	0.0666	0.2552	0.1120		
Ζ	4	12	24	4	6	4		
<i>d</i> -space range			0.85-14.35 Å	A (6-130° 2θ)				
χ^2			5.	00				
$R_{\rm p}$			7.	50				
$R_{ m wp}$			10	.06				
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors	$\sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{j=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{j=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{j$							
			$R_{wp} = \left(\frac{21w}{2}\right)$	$\frac{\Gamma_0 - \Gamma_c \Gamma_1}{\Sigma wI_0^2 } \Big)^2$				

Figure S9. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: STA; heating rate: 5 K min⁻¹; dwelling time: 5 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), $Ca_3Al_2O_6$ (purple), elemental Al (pink), Al_2O_3 (cyan).

	Refinem	ent details for the	data shown in Fig	gure S9				
Source	Bruker D8 ADVANCE (laboratory X-ray)							
Temperature			RT					
Pressure			ambient					
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 and	d 154.4308 pm				
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃			
Abbreviation	C12A7	CA	C3A1	_	_			
Space group	I43d	$P2_{1}/c$	Pa3	Fm3m	R3c			
<i>a</i> / pm	1197.72(1)	874.49(15)	1526.69(12)	405.43(1)	475.85(2)			
<i>b</i> / pm	a 809.09(9) a a a							
<i>c</i> / pm	а	1743.6(2)	а	а	1299.77(10)			
β / °	90	119.80(1)	90	90	90			
$V/ \text{ nm}^3$	1.7182	1.0705	3.5583	0.0666	0.2550			
Ζ	4	12	24	4	6			
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)				
χ^2			3.75					
$R_{\rm p}$			6.72					
$R_{ m wp}$			8.79					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$							
factors		R _{wp}	$\int_{D} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{1}{2}\right)^{\frac{1}{2}}$				

Figure S10. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 10 K min⁻¹; dwelling time: 5 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan).

	Refineme	nt details for the	data shown in Fig	ure S10				
Source	Bruker D8 ADVANCE (laboratory X-ray)							
Temperature			RT					
Pressure			ambient					
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm				
Chemical	CauAluOu	CaAl-O	Co.Al.O.	A 1	A1.O.			
formula	Ca ₁₂ A1 ₁₄ O ₃₃	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃			
Abbreviation	C12A7	CA	C3A1	—	—			
Space group	I 4 3d	$P2_{1}/c$	$Pa\overline{3}$	$Fm\overline{3}m$	$R\overline{3}c$			
<i>a</i> / pm	1197.77(1)	874.38(19)	1527.04(7)	405.47(1)	475.99(2)			
<i>b</i> / pm	a 809.21(10) a a a							
<i>c</i> / pm	а	1743.9(3)	а	а	1299.72(9)			
β / \circ	90	119.82(2)	90	90	90			
$V/ \text{ nm}^3$	1.7183	1.0705	3.5609	0.0666	0.2550			
Ζ	4	12	24	4	6			
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)				
χ^2			3.91					
$R_{\rm p}$			6.85					
$R_{ m wp}$			8.92					
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$							
factors	$p = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}}$							
		Rum	$h_{0} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum w I_{0} - I_{c} ^{2}}\right)$	$\frac{1}{2}$				
		- wp	$\sum wI_0^2 $	J				

Figure S11. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 20 K min⁻¹; dwelling time: 5 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan).

	Refineme	nt details for the	data shown in Fig	ure S11				
Source	Bruker D8 ADVANCE (laboratory X-ray)							
Temperature			RT					
Pressure			ambient					
Wavelengths		Cu Ka1 and Cu	<i>K</i> α ₂ : 154.0596 an	d 154.4308 pm				
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃			
Abbreviation	C12A7	CA	C3A1	-	-			
Space group	IĀ3d	$P2_{1}/c$	Pa3	Fm3m	R3c			
<i>a</i> / pm	1197.86(1)	875.1(5)	1527.1(3)	405.35(1)	476.01(2)			
<i>b</i> / pm	a 809.49(17) a a a							
<i>c</i> / pm	а	1744.8(6)	а	а	1299.83(13)			
β / °	90	199.92(6)	90	90	90			
$V/ \text{ nm}^3$	1.7188	1.0713	3.5610	0.0666	0.2551			
Ζ	4	12	24	4	6			
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)				
χ^2			1.78					
$R_{\rm p}$			7.08					
$R_{ m wp}$			8.99					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$							
factors		R_{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$				

Figure S12. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: STA; heating rate: 40 K min⁻¹; dwelling time: 5 h; gas flow: 40 mL min⁻¹ Ar : 40 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement details for the data shown in Figure S12					
Source		Bruke	er D8 ADVANC	E (laboratory X	(-ray)	
Temperature			R	Т		
Pressure			amb	oient		
Wavelengths		Cu $K\alpha_1$ a	und Cu <i>K</i> α ₂ : 154	.0596 and 154.	4308 pm	
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃	CaO
Abbreviation	C12A7	CA	C3A1	_	—	—
Space group	I43d	$P2_{1}/c$	Pa3	$Fm\overline{3}m$	R3c	Fm3m
<i>a</i> / pm	1197.84(1)	876.4(2)	1527.13(3)	405.43(1)	476.05(2)	481.41(3)
<i>b</i> / pm	а	808.89(16)	а	а	а	а
<i>c</i> / pm	а	1744.1(4)	а	а	1299.89(9)	а
β / \circ	90	119.97(3)	90	90	90	90
V/ nm^3	1.7187	1.0711	3.5615	0.0666	0.2551	0.1116
Ζ	4	12	24	4	6	4
<i>d</i> -space range			0.85-14.35 Å	(6-130° 2θ)		
χ^2			3.	85		
$R_{\rm p}$		7.01				
$R_{ m wp}$	9.42					
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$					
factors	$R_{p} = \sum w I_{0} - I_{c} ^{2};$ $R_{wp} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)^{\frac{1}{2}}$					

Figure S13. Results of the Rietveld refinements of the oxidation approach of CaAl₂ with repeated heating to 1273 K for 5 h each followed by grinding.

Figure S14. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 1 h; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement details for the data shown in Figure S14				
Source		Bruker D8	ADVANCE (labora	atory X-ray)	
Temperature			RT		
Pressure			ambient		
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm	
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al_2O_3	CaO
Abbreviation	C12A7	CA	-	-	—
Space group	IĀ3d	$P2_{1}/c$	Fm3m	R3c	Fm3m
<i>a</i> / pm	1203.25(2)	877.6(6)	405.40(1)	476.32(3)	481.71(4)
<i>b</i> / pm	а	809.0(3)	а	а	а
<i>c</i> / pm	а	1747.3(11)	а	1300.48(16)	а
β / °	90	120.00(8)	90	90	90
$V/ \text{ nm}^3$	1.7421	1.0743	0.0666	0.2555	0.1118
Ζ	4	12	4	6	4
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)	
χ^2			3.85		
R _p			8.73		
$R_{ m wp}$	11.12				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$				
factors	$R_{p} = \sum w I_{0} - I_{c} ^{2};$ $R_{wp} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)^{\frac{1}{2}}$				

Figure S15. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 5 h; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement details for the data shown in Figure S15					
Source		Bruker D8 ADVANCE (laboratory X-ray)				
Temperature			RT			
Pressure			ambient			
Wavelengths		Cu $K\alpha_1$ and Cu	ι <i>K</i> α ₂ : 154.0596 an	id 154.4308 pm		
Chemical	CauddluOa	$C_{2} \Lambda l_{2} O_{4}$	A1	A1202	CaO	
formula	Ca12A114O33	CaA1204	Al	A12O3	CaO	
Abbreviation	C12A7	CA	_	_	-	
Space group	I 4 3d	$P2_{1}/c$	$Fm\overline{3}m$	$R\overline{3}c$	Fm3m	
<i>a</i> / pm	1203.13(3)	876.2(5)	405.29(1)	476.25(3)	481.71(15)	
<i>b</i> / pm	а	809.35(18)	а	а	а	
<i>c</i> / pm	а	1745.9(8)	а	1299.42(17)	а	
β / \circ	90	119.93(17)	90	90	90	
$V/ \text{ nm}^3$	1.7416	1.0730	0.0666	0.2552	0.1118	
Ζ	4	12	4	6	4	
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)		
χ^2			2.97			
R _p			9.15			
$R_{ m wp}$	11.77					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors	$r = \frac{1}{2} \left(\sum_{i=1}^{n} \frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{2}}$					
	$R_{\rm um} = \left(\frac{\sum w I_0 - I_c ^2}{ w ^2}\right)^2$					
		- wp	$\sum wI_0^2 $	J		

Figure S16. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 48 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan).

	Refinement details for the data shown in Figure S16					
Source		Bruker D8 ADVANC	CE (laboratory X-ray)			
Temperature		R	Т			
Pressure		amb	oient			
Wavelengths	(Cu <i>K</i> α ₁ and Cu <i>K</i> α ₂ : 154	4.0596 and 154.4308 pi	n		
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al ₂ O ₃		
Abbreviation	C12A7	CA	_	_		
Space group	I 4 3d	$P2_{1}/c$	$Fm\overline{3}m$	$R\overline{3}c$		
<i>a</i> / pm	1201.92(3)	875.02(13)	405.19(1)	476.08(2)		
<i>b</i> / pm	а	809.69(9)	а	а		
<i>c</i> / pm	а	1744.4(2)	а	1299.84(10)		
β / \circ	90	119.76(1)	90	90		
$V/ \text{ nm}^3$	1.7363	1.0729	0.0665	0.2551		
Ζ	4	12	4	6		
<i>d</i> -space range		0.85-14.35 Å	A (6-130° 2θ)			
χ^2		2.	92			
R _p	8.57					
$R_{\rm wp}$	11.12					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors	$R_{p} = \sum w I_{0} - I_{c} ^{2} ;$ $R_{wp} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)^{\frac{1}{2}}$					

Figure S17. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 96 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan).

Refinement details for the data shown in Figure S17					
Source		Bruker D8 ADVANC	E (laboratory X-ray)		
Temperature		R	Т		
Pressure		amb	ient		
Wavelengths		<u>Cu Kα1 and Cu Kα2: 154</u>	.0596 and 154.4308 pi	n	
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al	Al ₂ O ₃	
Abbreviation	C12A7	CA	—	-	
Space group	IĀ3d	$P2_{1}/c$	Fm3m	R3c	
<i>a</i> / pm	1202.26(3)	875.20(15)	405.13(1)	476.12(2)	
<i>b</i> / pm	а	809.60(8)	а	а	
<i>c</i> / pm	а	1743.86(17)	а	1299.74(9)	
β / \circ	90	119.77(2)	90	90	
$V/ \text{ nm}^3$	1.7378	1.0726	0.0665	0.2552	
Ζ	4	12	4	6	
<i>d</i> -space range		0.85-14.35 Å	(6-130° 2θ)		
χ^2		3.	10		
R _p		8.4	47		
$R_{ m wp}$	11.22				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$				
factors	$R_{p} = \sum w I_{0} - I_{c} ^{2};$ $R_{wp} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)^{\frac{1}{2}}$				

Figure S18. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 1 h; total dwelling time: 1 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S18				
Source		Bruker D8	ADVANCE (labora	atory X-ray)	
Temperature			RT		
Pressure			ambient		
Wavelengths		Cu $K\alpha_1$ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm	
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al	Al_2O_3	CaO
Abbreviation	C12A7	CA	_	_	_
Space group	IĀ3d	$P2_{1}/c$	Fm3m	R3c	Fm3m
a / pm	1203.72(2)	877.5(4)	405.20(1)	475.24(3)	481.61(4)
<i>b</i> / pm	а	808.5(4)	a	а	а
<i>c</i> / pm	а	1749(2)	а	1300.15(16)	а
β / \circ	90	120.00(17)	90	90	90
V/ nm^3	1.7441	1.0750	0.0665	0.2554	0.1117
Ζ	4	12	4	6	4
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)	
χ^2			2.97		
R _p	8.30				
$R_{\rm wp}$	10.59				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$				
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$	

Figure S19. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 1 h; total dwelling time: 2 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S19					
Source		Bruker D8	ADVANCE (labora	atory X-ray)		
Temperature			RT			
Pressure			ambient			
Wavelengths		Cu $K\alpha_1$ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm		
Chemical	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al	Al ₂ O ₃	CaO	
Abbreviation	C12A7	CA	_	_	_	
Space group	I 4 3d	$P2_{1}/c$	Fm3m	$R\overline{3}c$	Fm3m	
<i>a</i> / pm	1204.10(2)	876.1(3)	405.38(1)	476.13(2)	481.50(7)	
<i>b</i> / pm	а	809.22(14)	а	а	а	
<i>c</i> / pm	а	1746.8(6)	а	1299.98(9)	а	
β / \circ	90	119.98(5)	90	90	90	
V/nm^3	1.7458	1.0728	0.0666	0.2552	0.1116	
Ζ	4	12	4	6	4	
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)		
χ^2			3.12			
$R_{ m p}$		8.43				
$R_{ m wp}$	6.08					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_{0} - I_{c} }{\sum wI_{0}^{2} }\right)$	$\left(\frac{2^{2}}{2}\right)^{\frac{1}{2}}$		

Figure S20. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 5 h; total dwelling time: 7 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S20					
Source		Bruker D8	ADVANCE (labora	tory X-ray)		
Temperature			RT			
Pressure			ambient			
Wavelengths		Cu $K\alpha_1$ and Cu	κα ₂ : 154.0596 an	d 154.4308 pm		
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al	Al_2O_3	CaO	
Abbreviation	C12A7	CA	_	_	_	
Space group	IĀ3d	$P2_{1}/c$	Fm3m	R3c	Fm3m	
<i>a</i> / pm	1203.96(3)	874.57(12)	405.46(4)	476.11(2)	482.4(3)	
<i>b</i> / pm	а	809.64(7)	а	а	а	
<i>c</i> / pm	а	1744.39(18)	а	1299.91(11)	а	
β/°	90	119.791(11)	90	90	90	
V/ nm^3	1.74515(11)	1.0719(2)	0.066656(18)	0.25519(3)	0.1122(2)	
Ζ	4	12	4	6	4	
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)		
χ^2			2.80			
R _p	8.82					
$R_{\rm wp}$	11.27					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$		

Figure S21. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 10 h; total dwelling time: 17 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S21					
Source		Bruker D8 ADVANCE (laboratory X-ray)				
Temperature			RT			
Pressure			ambient			
Wavelengths		Cu <i>K</i> α ₁ and Cu	Kα ₂ : 154.0596 an	d 154.4308 pm		
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al	Al ₂ O ₃	CaO	
Abbreviation	C12A7	CA	—	—		
Space group	I43d	$P2_{1}/c$	Fm3m	R3c	Fm3m	
<i>a</i> / pm	1202.55(4)	874.57(12)	405.39(7)	476.12(2)	482.0(2)	
<i>b</i> / pm	а	809.64(7)	а	a	а	
<i>c</i> / pm	а	1744.39(18)	а	1300.05(10)	а	
β / \circ	90	119.79(1)	90	90	90	
V/ nm^3	1.7390	1.0719	0.0666	0.2552	0.1120	
Ζ	4	12	4	6	4	
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)		
χ^2			3.05			
R _p	7.69					
$R_{ m wp}$	10.41					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$		

Figure S22. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 20 h; total dwelling time: 37 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan).

	Refinement details for the data shown in Figure S22					
Source		Bruker D8 ADVANC	E (laboratory X-ray)			
Temperature		R	Т			
Pressure		amb	vient			
Wavelengths		Cu <i>K</i> α ₁ and Cu <i>K</i> α ₂ : 154	0596 and 154.4308 pi	n		
Chemical	CauAluOu	CaALO	A 1	A1.O.		
formula	Ca ₁₂ A1 ₁₄ O ₃₃	CaAl ₂ O ₄	Al	A12O3		
Abbreviation	C12A7	CA	_	_		
Space group	I 4 3d	$P2_{1}/c$	$Fm\overline{3}m$	$R\overline{3}c$		
<i>a</i> / pm	1200.12(7)	874.65(8)	405.17(11)	476.05(3)		
<i>b</i> / pm	а	809.29(5)	а	а		
<i>c</i> / pm	а	1743.83(11)	а	1299.86(12)		
β/°	90	119.77(1)	90	90		
$V/ \text{ nm}^3$	1.7285	1.0714	0.0665	0.2551		
Ζ	4	12	4	6		
<i>d</i> -space range		0.85-14.35 Å	(6-130° 2θ)			
χ^2		2.0	08			
R _p		8.33				
R _{wp}	10.95					
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$					
factors		$R_{wp} = \left(\frac{\Sigma w}{\Sigma}\right)$	$\frac{ I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$			

Figure S23. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 20 h; total dwelling time: 57 h; air. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), Al_2O_3 (cyan).

Refinement details for the data shown in Figure S23					
Source	Bruk	Bruker D8 ADVANCE (laboratory X-ray)			
Temperature		RT			
Pressure		ambient			
Wavelengths	Cu Ka ₁	and Cu Ka2: 154.0596 and 154.	4308 pm		
Chemical	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Al ₂ O ₃		
formula					
Abbreviation	C12A7	CA	—		
Space group	I43d	$P2_{1}/c$	$R\overline{3}c$		
<i>a</i> / pm	1198.58(9)	871.48(5)	476.12(3)		
<i>b</i> / pm	а	809.26(4)	а		
<i>c</i> / pm	а	1749.41(14)	1299.51(13)		
β/°	90	119.78(1)	90		
V/ nm^3	1.7219	1.0709	0.2551		
Ζ	4	12	6		
<i>d</i> -space range		0.85-14.35 Å (6-130° 2θ)			
χ^2		2.22			
R _p		8.42			
$R_{\rm wp}$		12.18			
Definition of R		$R_n = \sum w I_0 - I_c ^2 ;$			
factors		$R_{wp} = \left(\frac{\sum w I_0 - I_c ^2 }{\sum wI_0^2 }\right)^{\frac{1}{2}}$			

Figure S24. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 20 h; total dwelling time: 77 h; air. The ticks indicate the Bragg positions for $CaAl_2O_4$ (green), Al_2O_3 (cyan).

	Refinement details for the data show	vn in Figure S24			
Source	Bruker D8 ADVANC	Bruker D8 ADVANCE (laboratory X-ray)			
Temperature	R	Г			
Pressure	amb	ient			
Wavelengths	Cu <i>K</i> α ₁ and Cu <i>K</i> α ₂ : 154	.0596 and 154.4308 pm			
Chemical	CaAl ₂ O ₄	Al_2O_3			
formula					
Abbreviation	CA	_			
Space group	$P2_1/c$	$R\overline{3}c$			
<i>a</i> / pm	871.49(6)	476.21(4)			
<i>b</i> / pm	809.41(6)	а			
<i>c</i> / pm	1749.67(18)	1299.3(2)			
β/°	119.78(1)	90			
$V/ \text{ nm}^3$	1.0712	0.2552			
Ζ	12	6			
<i>d</i> -space range	0.85-14.35 Å	(6-130° 2θ)			
χ^2	1.7	74			
R _p	9.7	17			
$R_{ m wp}$	12.	71			
Definition of R	$R_p = \sum w $	$R_n = \sum w I_0 - I_c ^2 ;$			
factors	$p = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$				
	$R_{\rm up} = \left(\frac{\sum w I_0 - I_c ^2 }{\sum w ^2}\right)^2$				
	$\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	$\sum wI_0^2 $)			

Figure S25. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 20 h; total dwelling time: 97 h; air. The ticks indicate the Bragg positions for $CaAl_2O_4$ (green), and Al_2O_3 (cyan).

	Refinement details for the data show	vn in Figure S25			
Source	Bruker D8 ADVANCE (laboratory X-ray)				
Temperature	R	Г			
Pressure	ambi	ient			
Wavelengths	Cu <i>K</i> α ₁ and Cu <i>K</i> α ₂ : 154	.0596 and 154.4308 pm			
Chemical	$CaAl_2O_4$	Al_2O_3			
formula					
Abbreviation	CA	-			
Space group	$P2_{1}/c$	$R\overline{3}c$			
<i>a</i> / pm	871.45(5)	476.13(4)			
<i>b</i> / pm	809.38(4)	а			
<i>c</i> / pm	1749.77(15)	1299.27(17)			
β / \circ	119.78(1)	90			
$V/ \text{ nm}^3$	1.0712	0.2551			
Ζ	12	6			
<i>d</i> -space range	0.85-14.35 Å	(6-130° 2θ)			
χ^2	3.0	08			
R _p	8.1	.6			
$R_{ m wp}$	12.2	22			
Definition of R	$R_p = \sum w $	$R_n = \sum w I_0 - I_c ^2 ;$			
factors	$(\Sigma_{1} L_{1} L_{2})^{\frac{1}{2}}$				
	$R_{\rm um} = \left(\frac{\sum W }{\sum W }\right)$	$R_{\rm unp} = \left(\frac{\sum w I_0 - I_c ^2}{2}\right)^2$			
	$\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	$\sum wI_0^2 $)			

Figure S26. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 0 h; number of cycle: 1; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement d	etails for the data sho	wn in Figure S26			
Source	Bruker D8 ADVANCE (laboratory X-ray)					
Temperature	RT					
Pressure		amb	pient			
Wavelengths	(Cu Kα ₁ and Cu Kα ₂ : 154	4.0596 and 154.4308 pn	n		
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃ Al Al ₂ O ₃ CaO					
Abbreviation	C12A7	_	—			
Space group	$I\overline{4}3d$ $Fm\overline{3}m$ $R\overline{3}c$ $Fm\overline{3}$					
<i>a</i> / pm	1204.28(3)	481.65(2)				
<i>b</i> / pm	а	а				
<i>c</i> / pm	а	а	1301.5(3)	а		
β / \circ	90	90	90	90		
$V/ \text{ nm}^3$	1.7466	0.0666	0.2559	0.1117		
Ζ	4	4	6	4		
<i>d</i> -space range		0.85-14.35 Å	A (6-130° 2θ)			
χ^2		2.	04			
R _p		9.	74			
$R_{\rm wp}$		12	.65			
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$					
factors		$R_{wp} = \left(\frac{\sum w }{\sum k}\right)$	$\frac{ I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$			

Figure S27. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 0 h; number of cycle: 2; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement details for the data shown in Figure S27						
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature			RT				
Pressure			ambient				
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm			
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	_	_	_		
Space group	IĀ3d	$P2_{1}/c$	Fm3m	R3c	Fm3m		
a / pm	1203.84(2)	877.2(14)	405.30(1)	476.11(3)	481.39(2)		
<i>b</i> / pm	a	808.0(5)	а	a	a		
<i>c</i> / pm	а	1749(3)	а	1300.03(14)	а		
β / \circ	90	120.0(2)	90	90	90		
V/ nm^3	1.7447	1.0740	0.0666	0.2552	0.1116		
Ζ	4	12	4	6	4		
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)			
χ^2			2.33				
R _p			9.89				
$R_{ m wp}$			12.44				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$						
factors		R _{wp}	$J_{n} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$			

Figure S28. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 0 h; number of cycle: 9; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refineme	ent details for the	data shown in Fig	gure S28			
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature			RT				
Pressure			ambient				
Wavelengths		Cu $K\alpha_1$ and Cu	ι <i>K</i> α ₂ : 154.0596 an	id 154.4308 pm			
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	_	-	—		
Space group	I43d	$P2_{1}/c$	Fm3m	$R\overline{3}c$	Fm3m		
<i>a</i> / pm	1203.65(2) 876.0(3) 405.37(2) 476.10(1) 481.41(
<i>b</i> / pm	a 809.46(14) a a a						
<i>c</i> / pm	a	1746.0(4)	а	1299.91(7)	а		
β / \circ	90	119.93(4)	90	90	90		
$V/ \text{ nm}^3$	1.7438	1.0729	0.0666	0.2552	0.1116		
Ζ	4	12	4	6	4		
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)			
χ^2			2.10				
$R_{\rm p}$			8.89				
$R_{ m wp}$			11.41				
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$						
factors		R _{wp}	$f_{p} = \left(\frac{\sum w I_0 - I_c }{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$			

Figure S29. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: muffle furnace; heating rate: 15 K min⁻¹; dwelling time: 0 h; number of cycle: 10; air. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), elemental Al (pink), Al₂O₃ (cyan), CaO (olive).

	Refinement details for the data shown in Figure S29						
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature			RT				
Pressure			ambient				
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm			
Chemical	Ca ₁₂ Al ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al ₂ O ₃	CaO		
Abbreviation	C12A7	CA	_				
Space group	IĀ3d	$P2_1/c$	Fm3m	R3c	Fm3m		
a / pm	1203.24(2)	876.3(2)	405.42(3)	476.13(1)	481.43(2)		
<i>b</i> / pm	a	809.39(13)	a	a	a		
c / pm	а	1746.3(4)	а	1299.80(7)	а		
β/°	90	119.96(3)	90	90	90		
$V/\text{ nm}^3$	1.7421	1.0731	0.0666	0.2552	0.1116		
Ζ	4	12	4	6	4		
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)			
χ^2			2.08				
R _p			8.84				
$R_{ m wp}$			11.35				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$						
factors		R _{wp}	$f_{0} = \left(\frac{\sum w I_0 - I_c ^2}{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$			

Figure S30. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: tube furnace; heating rate: 4 K min⁻¹; dwelling time: 0 h; gas flow: 20 mL min⁻¹ dried Ar : 20 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan).

	Refinement d	etails for the data show	wn in Figure S30			
Source	Bruker D8 ADVANCE (laboratory X-ray)					
Temperature		R	Т			
Pressure		amb	vient			
Wavelengths	(Cu <i>K</i> α ₁ and Cu <i>K</i> α ₂ : 154	0596 and 154.4308 pi	n		
Chemical	ConAltro	CaAl-O	A 1	A1-O-		
formula	Ca ₁₂ AI ₁₄ O ₃₃	CaAl ₂ O ₄	Al	Al ₂ O ₃		
Abbreviation	C12A7	CA	—	_		
Space group	$I\overline{4}3d$ $P2_1/c$ $Fm\overline{3}m$ $R\overline{3}$					
<i>a</i> / pm	1197.77(1) 874.7(3) 405.23(1) 475.					
<i>b</i> / pm	а	808.36(17)	а	а		
<i>c</i> / pm	а	1746.5(9)	а	1299.60(9)		
β / \circ	90	120.03(6)	90	90		
$V/ \text{ nm}^3$	1.7184	1.0691	0.0665	0.2550		
Ζ	4	12	4	6		
<i>d</i> -space range		0.85-14.35 Å	(6-130° 2θ)			
χ^2		5.0	67			
R _p		7.9	97			
$R_{\rm wp}$		10	0.6			
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$					
factors	$R_{wp} = \left(\frac{\sum w I_0 - I_c ^2}{\sum w I_c^2 }\right)^{\frac{1}{2}}$					

Figure S31. Rietveld fit of the powder X-ray diffraction pattern of $CaAl_2$ oxidized by the following conditions: tube furnace; heating rate: 4 K min⁻¹; dwelling time: 0 h; gas flow: 20 mL min⁻¹ O₂. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green), elemental Al (pink), Al_2O_3 (cyan), CaO (olive).

	Refinement details for the data shown in Figure S31						
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature		F	RT				
Pressure		am	bient				
Wavelengths	C	Cu Kα ₁ and Cu Kα ₂ : 15	4.0596 and 154.4308 pr	n			
Chemical	CauAluOm	CaALO	Δ1	A1=0=			
formula	Ca ₁₂ A1 ₁₄ O ₃₃	CaAI2O4	Al	A12O3			
Abbreviation	C12A7	CA	-	_			
Space group	$I\overline{4}3d$ $P2_1/c$ $Fm\overline{3}m$						
<i>a</i> / pm	1197.73(1)	874.8(8)	405.18(1)	475.96(1)			
<i>b</i> / pm	а	808.4(4)	а	а			
<i>c</i> / pm	а	1746(3)	а	1299.43(8)			
β / \circ	90	120.1(2)	90	90			
V/ nm^3	1.7182	1.0690	0.0665	0.2549			
Ζ	4	12	4	6			
<i>d</i> -space range		0.85-14.35	Å (6-130° 2θ)				
χ^2		4	.90				
R _p		7.	.09				
$R_{ m wp}$		9	.41				
Definition of R	$R_p = \sum w I_0 - I_c ^2 ;$						
factors		$R_{wp} = \left(\frac{\sum v }{\sum v }\right)$	$\frac{v I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$				

Figure S32. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: tube furnace; heating rate: 4 K min⁻¹; dwelling time: 5 h; gas flow: 20 mL min⁻¹ O₂. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂O₄ (green), Ca₃Al₂O₆ (purple), elemental Al (pink), Al₂O₃ (cyan).

	Refinement details for the data shown in Figure S32						
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature			RT				
Pressure			ambient				
Wavelengths		Cu <i>K</i> α ₁ and Cu	ι <i>K</i> α ₂ : 154.0596 and	d 154.4308 pm			
Chemical	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	Ca ₃ Al ₂ O ₆	Al	Al ₂ O ₃		
formula		2 - 4			2 - 5		
Abbreviation	C12A7	CA	C3A1	-	-		
Space group	I 4 3d	$P2_{1}/c$	Pa3	Fm3m	$R\overline{3}c$		
<i>a</i> / pm	1197.93(1)	871.82(17)	1527.08(8)	405.18(1)	476.03(1)		
<i>b</i> / pm	а	809.08(14)	а	а	а		
<i>c</i> / pm	а	1748.7(4)	а	а	1299.55(7)		
β/°	90	119.81(2)	90	90	90		
$V/ \text{ nm}^3$	1.7191	1.0703	3.5611	0.0665	0.2550		
Ζ	4	12	24	4	6		
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)			
χ^2			5.36				
$R_{\rm p}$			7.12				
$R_{ m wp}$			9.4				
Definition of R	$R_n = \sum w I_0 - I_c ^2 ;$						
factors		R _{wp}	$I_{0} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)$	$\left(\frac{1}{2}\right)^{\frac{1}{2}}$			

Figure S33. Rietveld fit of the powder X-ray diffraction pattern of CaAl₂ oxidized by the following conditions: induction furnace; The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), CaAl₂ (green), CaAl₄ (pink), CaO (olive).

	Refinement details for the data shown in Figure S33					
Source	Bruker D8 ADVANCE (laboratory X-ray)					
Temperature		R	ХT			
Pressure		aml	pient			
Wavelengths	(Cu Kα1 and Cu Kα2: 154	4.0596 and 154.4308 pr	n		
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃ CaAl ₂ CaAl ₄ C					
Abbreviation	C12A7	_	_	_		
Space group	$I\overline{4}3d$ $Fd\overline{3}m$ $C2/m$ Fm					
<i>a</i> / pm	1198.89(6) 803.98(1) 616.83(2) 481.					
<i>b</i> / pm	а	а				
<i>c</i> / pm	а	а	634.48(2)	а		
β / \circ	90	90	118.06(1)	90		
$V/ \text{ nm}^3$	1.7232	0.5197	0.2135	0.1114		
Ζ	4	8	2	4		
<i>d</i> -space range		0.85-14.35 Å	Å (6-130° 2θ)			
χ^2		5.	12			
R _p		7.	43			
$R_{\rm wp}$		9.	84			
Definition of <i>R</i>		$R_p = \sum w $	$ I_0 - I_c ^2$;			
factors	$R_{p} = \sum w I_{0} - I_{c} ^{2};$ $R_{wp} = \left(\frac{\sum w I_{0} - I_{c} ^{2}}{\sum wI_{0}^{2} }\right)^{\frac{1}{2}}$					

Figure S34. Rietveld fit of the powder X-ray diffraction pattern taken from nominal 'Ca₆Al₇'. The ticks indicate the Bragg positions for CaAl₂ (orange), Ca₈Al₃ (green), Ca₁₁Al₇ (purple).

	Refinement details for the data shown in Figure S34					
Source	Bruke	r D8 ADVANCE (laboratory	YX-ray)			
Temperature		RT				
Pressure		ambient				
Wavelengths	Cu Kα ₁ a	nd Cu Kα ₂ : 154.0596 and 15	4.4308 pm			
Chemical formula	CaAl ₂ Ca ₈ Al ₃ Ca ₁₁ Al ₇					
Space group	Fd3m	$P\overline{1}$	Fm3m			
<i>a</i> / pm	804.03(1)	948.5(2)	1642.92(1)			
<i>b</i> / pm	а	966.6(2)	а			
<i>c</i> / pm	а	957.4(3)	а			
α / \circ	90	99.57(2)	90			
β / \circ	90	100.99(2)	90			
y/°	90	119.32(2)	90			
V/nm^3	0.5198	0.7159	4.4346			
Ζ	8	2	8			
<i>d</i> -space range		0.85-14.35 Å (6-130° 2θ)				
χ^2		1.58				
R _p		8.77				
$R_{ m wp}$		11.48				
Definition of <i>R</i> factors	$R_p = \sum w I_0 - I_c ^2 ;$					
		$R_{wp} = \left(\frac{\sum w I_0 - I_c ^2 }{\sum wI_0^2 }\right)^{\frac{1}{2}}$				

Figure S35. STA experiment (top) and the corresponding Rietveld refinements of the collected powder X-ray diffraction data (bottom) of the oxidation of nominal 'Ca₆Al₇'. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), Al (green), Al₂O₃ (pink), CaO (olive).

	Refinement d	etails for the data show	wn in Figure S35			
Source	Bruker D8 ADVANCE (laboratory X-ray)					
Temperature		R	Т			
Pressure		amb	oient			
Wavelengths	(Cu $K\alpha_1$ and Cu $K\alpha_2$: 154	4.0596 and 154.4308 pn	n		
Chemical formula	Ca ₁₂ Al ₁₄ O ₃₃ Al Al ₂ O ₃ CaO					
Abbreviation	C12A7	-	—	—		
Space group	$I\overline{4}3d$ $Fm\overline{3}m$ $R\overline{3}c$					
<i>a</i> / pm	1198.00(2)	405.43(2)	475.65(11)	481.58(4)		
<i>b</i> / pm	а	а	а	а		
<i>c</i> / pm	а	а	1301.4(8)	а		
β / \circ	90	90	90	90		
$V/ \text{ nm}^3$	1.7194	0.0666	0.2552	0.1117		
Ζ	4	4	6	4		
<i>d</i> -space range		0.85-14.35 Å	A (6-130° 2θ)			
χ^2		2.	87			
R _p		8.	77			
$R_{\rm wp}$		11.	.95			
Definition of R	$R_n = \sum w I_0 - I_c ^2;$					
factors		$R_{wp} = \left(\frac{\sum w }{\sum k}\right)$	$\frac{ I_0 - I_c ^2 }{\sum wI_0^2 } \Big)^{\frac{1}{2}}$			

Figure S36. STA experiment (top) and the corresponding Rietveld refinements of the collected powder X-ray diffraction data (bottom) of the oxidation of nominal 'Ca₆Al₇'. The ticks indicate the Bragg positions for Ca₁₂Al₁₄O₃₃ (orange), Al (green), Al₂O₃ (pink), CaO (olive).

	Refinement details for the data shown in Figure S36						
Source		Bruker D8 ADVANCE (laboratory X-ray)					
Temperature		RT					
Pressure			ambient				
Wavelengths		Cu $K\alpha_1$ and Cu	ι <i>K</i> α ₂ : 154.0596 an	d 154.4308 pm			
Chemical formula	$Ca_{12}Al_{14}O_{33}$	Ca ₁₂ Al ₁₄ O ₃₃ Ca ₃ Al ₂ O ₆ Al Al ₂ O ₃ CaO					
Abbreviation	C12A7	C3A1	-	-	-		
Space group	$I\overline{4}3d$ $Pa\overline{3}$ $Fm\overline{3}m$ $R\overline{3}c$ $Fm\overline{3}m$						
<i>a</i> / pm	1197.77(1)	1526.96(3)	405.34(2)	476.00(4)	481.48(5)		
<i>b</i> / pm	а	а	а	а	а		
<i>c</i> / pm	а	а	а	1300.1(2)	а		
β / °	90	90	90	90	90		
$V/ \text{ nm}^3$	1.7184	3.5602	0.0666	0.2551	0.1112		
Ζ	4	24	4	6	4		
<i>d</i> -space range		0.8	5-14.35 Å (6-130°	2 <i>θ</i>)			
χ^2			2.67				
R _p			8.52				
$R_{ m wp}$			10.86				
Definition of R		F	$R_p = \sum w I_0 - I_c ^2$;			
factors		R _{w1}	$p_p = \left(\frac{\sum w I_0 - I_c }{\sum wI_0^2 }\right)$	$\left(\frac{2}{2}\right)^{\frac{1}{2}}$			

Figure S37. Rietveld refinements of the collected powder X-ray diffraction data for the result of the solid-state reaction between $Ca(NO_3)_2 \cdot 4 H_2O$ and $Al(NO_3)_3 \cdot 9 H_2O$. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange).

Refinement details for the data shown in Figure S37				
Stoe Stadi P diffractometer (laboratory X-ray)				
RT				
ambient				
Mo <i>K</i> α ₁ : 70.93 pm				
$Ca_{12}Al_{14}O_{33}$				
		C12A7		
I 4 3d				
1200.20(3)				
а				
а				
90				
1.7289				
4				
0.91-20.08 Å (2-46° 2θ)				
7.53				
3.07				
4.94				
$R_p = \sum w I_0 - I_c ^2 ;$				
$R_{wp} = \left(\frac{\sum w I_0 - I_c ^2 }{\sum wI_0^2 }\right)^{\frac{1}{2}}$				

Figure S38. Rietveld refinements of the collected powder X-ray diffraction data for the result of the solid-state reaction between $Ca(NO_3)_2 \cdot 4 H_2O$ and $2 Al(NO_3)_3 \cdot 9 H_2O$. The ticks indicate the Bragg positions for $Ca_{12}Al_{14}O_{33}$ (orange), $CaAl_2O_4$ (green) and $CaAl_4O_7$ (purple).

Refinement details for the data shown in Figure S38			
Source	Stoe Stadi P diffractometer (laboratory X-ray)		
Temperature	RT		
Pressure	ambient		
Wavelengths	Mo <i>K</i> α ₁ : 70.93 pm		
Chemical formula	$Ca_{12}Al_{14}O_{33}$	CaAl ₂ O ₄	CaAl ₄ O ₇
Abbreviation	C12A7	CA	CA2
Space group	I 4 3d	$P2_{1}/c$	$C2_{1}/c$
<i>a</i> / pm	1198.99(7)	874.16(8)	1289.14(10)
<i>b</i> / pm	а	809.14(6)	888.33(7)
<i>c</i> / pm	а	1741.93(13)	543.70(4)
β / \circ	90	119.76(1)	107.03(1)
$V/ \text{ nm}^3$	1.7236	1.8965	0.5953
Ζ	4	12	4
<i>d</i> -space range	0.91-20.08 Å (2-46° 2 <i>θ</i>)		
χ^2	14.35		
R _p	3.76		
$R_{\rm wp}$	5.53		
Definition of R	$R_{p} = \sum w I_{0} - I_{c} ^{2}$;		
factors	$R_{wp} = \left(\frac{\sum w I_0 - I_c ^2 }{\sum wI_0^2 }\right)^{\frac{1}{2}}$		