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1. Instrumentation

A Bruker AXS D-8 Advanced SWAX diffractometer was employed to obtained the powder X-diffration 
(PXRD) pattern via utilising Cu-K ( = 1.5406 Å) source of radiation. The Fourier-transform infrared 𝛼 𝜆
spectroscopy (FTIR) technique was used to analyze the bonding connectivity of the as-synthesized 
material using a Perkin Elmer Spectrum 100 spectrophotometer. Further to confirm the presences of 
different types N, O, C XPS analysis has been performed using Thermo Fisher Instrument with Cu-kα as 
source of radiation. While, BET surface area analysis data were obtained from a surface area/porosity 
analyzer (Quantachrome Autosorb-iQ, USA). Additionally, to determine the pore size distribution of the 
generated N2 adsorption-isotherm, Non-Local Density Functional Theory (NLDFT) was utilized. Moreover, 
to determine the thermal stability of the as-synthesized material, Thermo-gravimetric analysis was carried 
out in a Mettler Toledo TGA/DTA 851e TA-SDT Q-600 instrument. Field emission scanning electron 
microscopy (FESEM) images of the material were collected from a JEOL JEM 6700 instrument. 
Transmission electron microscopy (TEM) images were taken using JEOL JEM 2100 and high-resolution 
images were obtained using scanning tunneling microscope (STM) from Nanosurf NaioSTM.

2. Electrochemical measurements: 

CHI 760E and Metrohm Multi Auto-lab/M204 electrochemical work-station consisting of three-electrode 
cell namely working electrode [RDE (rotating disk electrode) dia-3mm, RRDE (rotating ring disk electrode) 
dia-5mm], reference electrode (3M-KCl, Ag/AgCl) and counter electrode (graphite rod dia-10 mm) was 
used to record the electrochemical data for the as-synthesized porous polymeric network. The catalyst ink 
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was prepared by using 5 mg of catalyst in water and isopropanol (1:1) and sonicating for 30 minutes. For 
comparison, Pt/C ink was prepared in ethanol and DI water containing Nafion (5%) solution, which was 
dispersed by ultrasonication for 30 min.  Before drop-casting, the catalyst on the electrodes, the glassy 
carbon, RDE, and RRDE electrodes were polished by using 1, 0.3, and 0.05 µm alumina powder (Al2O3) 
and washed with DI water ultrasonically. All the catalysts were drop-casted on the electrodes to maintain 
a mass loading of 0.65 mg cm-2. Moreover, the following experiments have been performed after 30 
minutes of oxygen gas purging in 0.1 M KOH to record the cyclic voltammetry (CV), llinear sweep 
voltammetry (LSV), chronoamperometry, and electrochemical impedance spectroscopy (EIS), 
respectively.

The obtained potentials were calibrated to RHE (reversible hydrogen electrode) using the equation given 
below.3

 𝐸(𝑅𝐻𝐸) (𝑉) = 𝐸_(𝐴𝑔/𝐴𝑔𝐶𝑙)  (3 𝑀 𝐾𝐶𝑙) 𝑉 +  (0.058 ×  𝑝𝐻)  𝑉 +  0.210 𝑉          (𝑆1)

The number of electron transfer (n) per O2 participate in ORR can be determined by Koutecky-Levich (K-
L) equation-
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J is the measured current density, JK (kinetic current density) and JL (diffusion-limiting current density), ω 
is the angular velocity of the disk (ω = 2πN, linear rotation speed (N), n is the overall number of electrons 
transferred in ORR, Faraday constant (F = 96485 C mol−1),  is the kinematic viscosity of the electrolyte, 𝜗
C0 is the bulk concentration of O2, k is the electron transfer rate constant diffusion coefficient, and (D0) of 
O2 in electrolyte solution. The B and JK values can be resolved from the Koutecky-Levich (K-L) plots 
based on the Levich equation below.

                                                       (S3)𝐵 = 0.62𝑛𝐹𝐶0 𝐷02/3𝜗 ‒ 1/6

                                                                 (S4)𝐽K =  nFkC0

For the ORR analysis, the total no. of electrons (n) participating in the reaction was calculated by using 
equation (5) while, the percentage of hydrogen peroxide (%H2O2) generation was evaluated by using 
equation (6),

                                                                                                                 (S5)
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3. Supplementary Figures
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Fig. S1. FTIR spectra of Fe-ZIF-67 and precursor 2-methylmethylimidazol.



Fig. S2. Thermogravimetric analysis (TGA) of as synthesized material Fe-ZIF-67.
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Fig. S3. TEM image of Fe,Co-HPNC. 



Fig. S4. EDX analysis of Fe, Co-HPNC catalyst.



Fig. S5. EDX mapping of Fe, Co-HPNC catalyst.



Fig. S6. Pore size distribution curve of synthesized material (a) Fe, Co-HPNC, (b) Fe-ZIF-67 and Fe, 
Co-NC.



Fig. S7. High resolution deconvoluted XPS spectra of (a) C 1s, (b) N 1s   of Fe, Co-HPNC.



Fig. S8. CV plots of Fe, Co-HPNC in 0.1 M KOH saturated with Ar and 
O2 at 10 mV s-1 scan rate.
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Fig. S9. (a) LSV curve of Fe, Co-HPNC at different rotations from (625-4900) using RRDE in 0.1 M 
KOH. 



Fig. S10. (a) KL-plot corresponding to LSV curve at different rotations of Fe, Co-HPNC.
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Fig. S11. Ring and disk current of Fe, Co-HPNC catalyst in O2 saturated 0.1 M KOH at 1600 rpm.



 

Fig. S12. LSV of Fe, Co-HPNC taken before and after stability in O2 saturated 0.1 M 
KOH at 1600 rpm.
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Fig. S13. LSV of Fe, Co-HPNC taken before and after methanol tolerance in O2 
saturated 0.1 M KOH at 1600 rpm.
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Fig. S14. Chronoamperometric response of Fe, Co-HPNC taken in 1.0 M KOH for 
OER stability. 
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Fig. S15.  XRD pattern of Fe, Co-HPNC taken after stability. 
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Fig. S16. Raman spectra of Fe, Co-HPNC taken after stability. 



     

Table S1. BET surface area and total pore volume of synthesized material Fe-ZIF-67, Fe, Co-NC and 
Fe, Co-HPNC.

Table S2. Comparison table of ΔE of various catalysts in literature with Fe, Co-HPNC.



Note: CoFe/N-GCT: CoFe alloy nanoparticles embedded in N-doped bamboo-like CNTs tangled 
with reduced graphene oxide (rGO) nanosheets; CNS: porous carbon nanosheets; NCNTs: N-
doped carbon nanotubes; N-GCNT: N-doped graphitic carbon nanotubes; NPC: porous carbon 
nanosheets; CMP: conjugated microporous polymers; SPPc: silica-protected Fe- and Co-
modified, S-containing polyphthalocyanine; ps: peanut shell

Catalysts Electrolyte E (1/2) (V) 
vs RHE

Ej=10 (V)
vs RHE

∆E (V) Ref.

Fe,Co-HPNC  0.1 M KOH for 
ORR, and N2 
saturated 1 M 
KOH for OER.

0.86 0.7 Current work

FeCo@MNC 0.1M KOH 0.901 1.596 0.695 1

FeCo-N-3D-HG 0.1M KOH 0.860 1.62 0.760 2

Fe3Co7-NC 0.1M KOH 0.893 1.57 0.677 3

Fe,Co,N-C 0.1M KOH 0.90 1.64 0.74 4

FeCo−N/C 0.1M KOH 0.84 1.60 0.77 5

Fe-Co4N@N-C 0.1M KOH 0.83 1.55 0.72 6

Meso/micro-

FeCoNx-CN-30

0.1 M KOH for ORR, 
and N2 saturated 1 M 

KOH for OER.

0.886 1.67 0.784 7

Fe1.2Co@NC/

NCNTs

0.1M KOH 0.82 1.585 0.765 8

FeCo@NCNS 0.1 M KOH 0.827 1.597 0.772 9

FeCo/N-DNC 0.1M KOH 0.81 1.62 0.81 10

FeCo-NCps 0.1M KOH 0.845 1.61 0.76 11

CoFe/N-GCT 0.1M KOH 0.79 1.67 0.88 12

N-

GCNT/FeCo-3

0.1M KOH 0.92 1.73 0.81 13

(Fe,Co)SPPc O2 saturated 0.1 M 
KOH for ORR, and O2 

saturated 1 M KOH 
for OER.

0.830 1.583 0.753 14

FeCo-NCNFs-

800

0.1M KOH 0.817 1.686 0.869 15

CMP-CoFe/C 0.1M KOH 0.84 1.64 0.88 16

Catalysts ∆E (V) OCV 
(V)

Areal power
in liq. ZAB
(mW cm-2)

Ref.

Fe,Co-HPNC 0.7 1.42 216 Current work
FeCo@MNC 0.695 1.51 311.2 1

FeCo-N-3D-HG 0.760 1.46 238.6 2

Fe3Co7-NC 0.677 1.51 133 3

Fe,Co,N-C 0.74 1.40 198.4 4

Meso/micro-

FeCoNx-CN-30

0.784 1.4 150 7

Table S3. Comparison of electrochemical activity of Fe,Co-HPNC in metal-air battery 
with reported catalysts:
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