

Supporting Information
for

**Tuning the Magnetic Properties of Dinuclear Cobalt-Tetraoxolene
Compounds: From Valence Tautomerism to Ferromagnetic Coupling**

Yu-Meng Zhao,^a Jia-Ping Wang,^a Xiang-Yi Chen,^b Meng Yu,^{*a} Alyona A. Starikova,^{*c} and Jun Tao^{*a}

[†]Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.

[‡]Fujian Institute for Food and Drug Quality Control, Fuzhou, Fujian 350002, People's Republic of China.

[§]Institute of Physical and Organic Chemistry, Southern Federal University, Stachka Avenue 194/2, Rostov-on-Don 344090, Russian Federation.

Email: taojun@bit.edu.cn; mengyu@bit.edu.cn; aastarikova@sfedu.ru

Contents

Table S1. Frequencies (in cm^{-1}) of stretching vibrations, according to the DFT UTPSSh/6-311++G(d,p) calculations.....	S4
Table S2. Crystal data and structural refinements for 3	S5
Table S3. Selected bond lengths and angles for 3	S6
Table S4. Bond valence sum (BVS) calculation for Co atoms in 3	S7
Table S5. Crystal data and structural refinements for 4 and 5	S7
Table S6. Selected bond lengths and angles for 4 and 5	S8
Table S7. Bond valence sum (BVS) calculation for Co ions in 4 and 5	S9
Table S8. Parameters of intermolecular interactions for 3	S9
Table S9. Parameters Obtained from PHI Fitting for compounds 4 and 5 using other fitting models.	S9
Table S10. Spin states (<i>S</i>), total energies without (<i>E</i>) and with (<i>E</i> ^{ZPE}) zero-point harmonic vibrations, Total enthalpies (<i>H</i> ²⁹⁸) and expectation values of the spin-squared operator (\hat{S}^2) of the com- Pounds 3-5 calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S9
Table S11. Relative energies without (ΔE) and with (<i>E</i> ^{ZPE}) zero-point harmonic vibrations, relative enthalpie (ΔH ²⁹⁸) (all values are given in kcal mol^{-1}) of charge distributions of the com- pounds 3-5 calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S10
Table S12. Exchange coupling parameters (<i>J</i> , given in cm^{-1}) in the compounds 3-5 calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S11
Figure S1. IR absorption spectra of 3-5	S12
Figure S2. Solid-state UV-Vis diffuse reflectance spectra of 3-5	S12
Figure S3. Corresponding orbitals for Compound 3 in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model.....	S13
Figure S4. Corresponding orbitals for Compound 4 in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model.....	S14
Figure S5. Corresponding orbitals for Compound 3 in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model.....	S15
Figure S6. Perspective view of the cations of 4 · S and 5	S16
Figure S7. The packing diagrams of 3	S16
Figure S8. The packing diagrams of 4	S17
Figure S9. The packing diagrams of 5 ·	S17
Figure S10. Thermogravimetric analysis of 3 - 5	S18
Figure S11. $\chi_M T$ versus <i>T</i> plot for compound 3 in the range of 300-2-390-2 K. Applied field: 5000 Oe.....	S18
Figure S12. <i>M</i> versus <i>H</i> plots at 2 K for 4	S19
Figure S13. <i>M</i> versus <i>H</i> plots at 2 K for 5 ·	S19
Figure S15. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe.	

Solid black lines represent the fitting results by the PHI program neglecting intermolecular magnetic interactions based on equation 1	S20
Figure S14. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe. Solid black lines represent the fitting results by the PHI program based on equation 1 including long-distance coupling constants J_2 and J_3 during data fitting.	S20
Figure S16. Optimized geometries of the compound 3 in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S21
Figure S17. Optimized geometries of the compound 4 in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S22
Figure S18. Corresponding orbitals for 4 and 5 visualizing the hs-Co ^{II} -Sq1 exchange interactions, as Calculated by the DFT UTPSSH/6-311++G(d,p) method (contour value = 0.03 e Å ⁻³)	S23
Figure S19. Corresponding orbitals for Zn-SQ-SQ-Zn analogs of 4 and 5 visualizing the Co ^{II-HS} -Sq1 exchange interactions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S24
Figure S20. Optimized geometries of the compound 5 in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.....	S25

1. Additional Tables

Table S1. Frequencies (in cm^{-1}) of stretching vibrations, according to the DFT UTPSSh/6-311++G(d,p) calculations.

Complex	$\text{C}\equiv\text{O}$ ($[\text{Co}(\text{CO})_4]^-$)	$\text{C}-\text{N}$ (Me_ntpa)	$\text{C}-\text{O}/\text{C}=\text{O}$ (semiquinone)	$\text{C}-\text{O}$ (catecholate)
3, $\{\text{Co}^{\text{III-LS}}\text{-pyrene}^{\text{Cat-Sq}}\text{-Co}^{\text{II-HS}}\}^{2+}$	2114 2107 2033 2029 1990 1986 1977 1974	1660 1659 1632 1631	1500	1448
4, $\{\text{Co}^{\text{II-HS}}\text{-pyrene}^{\text{Sq-Sq}}\text{-Co}^{\text{II-HS}}\}^{2+}$	2109 2029 1985 1977	1661 1660 1633	1496	—
5, $\{\text{Co}^{\text{II-HS}}\text{-pyrene}^{\text{Sq-Sq}}\text{-Co}^{\text{II-HS}}\}^{2+}$	2109 2030 1986 1978	1661 1659 1634	1497	—

Table S2. Crystal data and structural refinements for **3**.

	3		
<i>T</i> / K	100	298	360
Formula	C ₈₂ H ₇₄ Co ₄ N ₈ O ₁₂	C ₆₈ H ₅₈ Co ₄ N ₈ O ₁₂	C ₆₈ H ₅₈ Co ₄ N ₈ O ₁₂
<i>M_r</i> / g mol ⁻¹	1599.21	1414.94	1414.94
Crystal system		Monoclinic	
Space group		<i>P</i> 2 ₁ /c	
<i>a</i> / Å	8.7470(5)	8.8691(8)	8.9372(4)
<i>b</i> / Å	17.2680(7)	17.7249(14)	17.7258(8)
<i>c</i> / Å	24.2915(1)	24.8969(18)	24.7614(10)
α / °	90	90	90
β / °	92.161(4)	91.742(8)	92.352(4)
γ / °	90	90	90
<i>V</i> / Å ³	3666.5(3)	3912.1(5)	3919.4(3)
<i>Z</i>		2	
ρ_{calc} / g cm ⁻³	1.449	1.201	1.199
μ / mm ⁻¹	0.959	0.890	0.888
<i>F</i> (000)	1652.0	1452.0	1452.0
<i>R</i> _{int} / %	7.34	7.15	3.86
<i>R</i> ₁ [<i>I</i> ≥ 2σ(<i>I</i>)]	0.0732	0.0760	0.0738
<i>wR</i> ₂ (all data)	0.1936	0.2270	0.2432
CCDC no.	2224738	2224741	2224744

Table S3. Selected bond lengths and angles for **3**.

	3		
<i>T</i> / K	100	298	360
Co1-O1 / Å	1.868(2)	1.896(3)	1.976(3)
Co1-O2 / Å	1.879(3)	1.930(3)	1.933(3)
Co1-N1 / Å	1.965(3)	2.008(3)	2.061(4)
Co1-N2 / Å	1.925(3)	1.968(3)	2.008(4)
Co1-N3 / Å	1.920(3)	1.971(3)	2.016(4)
Co1-N4 / Å	1.922(3)	1.968(3)	1.997(4)
O1-C1 / Å	1.358(4)	1.342(4)	1.301(6)
O2-C2 / Å	1.352(4)	1.330(4)	1.327(5)
C1-C2 / Å	1.380(5)	1.402(5)	1.400(6)
C1-C5 / Å	1.430(5)	1.428(5)	1.450(6)
C2-C3 / Å	1.438(5)	1.432(5)	1.414(6)
C3-C4 / Å	1.426(5)	1.410(5)	1.421(5)
C4-C4 / Å	1.427(5)	1.428(4)	1.441(6)
C4-C5 / Å	1.423(4)	1.421(4)	1.420(6)
N2-Co1-N1	85.62(1)	83.58(1)	82.16(2)
N2-Co1-N3	170.0(7)	166.5(1)	163.4(1)
N3-Co1-N1	84.73(1)	83.06(1)	81.67(1)
N4-Co1-N1	86.12(1)	84.01(1)	83.08(1)
N4-Co1-N2	92.19(1)	91.66(1)	88.88(1)
N4-Co1-N3	89.89(1)	89.12(1)	92.68(1)
O1-Co1-N1	178.6(1)	178.6(1)	179.1(1)
O1-Co1-N2	95.00(1)	97.05(1)	87.88(2)
O1-Co1-N3	94.71(1)	96.33(1)	98.54(1)
O1-Co1-N4	92.57 (1)	94.78(1)	96.10(1)
O2-Co1-N1	91.78(1)	94.50(1)	96.17(1)
O2-Co1-N2	89.38(1)	90.39(1)	87.82(1)
O2-Co1-N3	88.19(1)	88.47(1)	90.39(1)
O2-Co1-N4	177.28(1)	177.3(1)	176.6(1)
O2-Co1-O1	89.50(1)	86.69(1)	84.62(1)
Σ / deg ^a	32.81	49.76	63.32
Θ / deg ^b	88.85	135.9	175.6
Diox MOS ^c	-1.8	-1.6	-1.4

^aThe sum of the deviation of 12 unique *cis* ligand-metal-ligand angles from 90°. ^bThe sum of the deviation of 24 unique torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the *pseudo*-threefold axis from 60°. ^cEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting of C–C and C–O bond lengths to assign an apparent oxidation state: -1 for a semiquinonate ligand and -2 for a catecholate ligand.

Table S4. Bond valence sum (BVS)^a calculation for Co atoms in **3**.

3		
<i>T</i> / K	100	298
Atom	Co1	Co1
BVS	3.1	2.8
		360
		Co1
		2.5

Table S5. Crystal data and structural refinements for **4** and **5**.

	4	5
<i>T</i> / K	100	100
Formula	C ₇₀ H ₆₂ Co ₄ N ₈ O ₁₂	C ₇₄ H ₆₈ Co ₄ Cl ₆ N ₈ O ₁₂
<i>M</i> _r / g mol ⁻¹	1442.99	1709.78
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2 ₁ /c	<i>P</i> 1̄
<i>a</i> / Å	14.477(2)	11.8002(5)
<i>b</i> / Å	15.1685(7)	12.6052(7)
<i>c</i> / Å	24.167(3)	16.1129(8)
α / °	90	103.951(4)
β / °	135.18(3)	97.024(4)
γ / °	90	106.222(4)
<i>V</i> / Å ³	3740.7(14)	2186.65(19)
<i>Z</i>	2	1
ρ _{calc} / g cm ⁻³	1.281	1.298
μ / mm ⁻¹	0.932	0.985
<i>F</i> (000)	1484.0	874.0
<i>R</i> _{int} / %	5.88	6.80
<i>R</i> ₁ [<i>I</i> ≥ 2σ(<i>I</i>)]	0.1286	0.0774
<i>wR</i> ₂ (all data)	0.3994	0.2308
CCDC no.	2287990	2158906

Table S6. Selected bond lengths and angles for **4** and **5**.

<i>T</i> / K	4	5
	100	100
Co1-O1 / Å	2.006(6)	2.015(3)
Co1-O2 / Å	2.076(8)	2.129(2)
Co1-N1 / Å	2.130(7)	2.160(4)
Co1-N2 / Å	2.150(3)	2.151(4)
Co1-N3 / Å	2.146(4)	2.186(3)
Co1-N4 / Å	2.074(6)	2.186(3)
O1-C1 / Å	1.274(9)	1.291(4)
O2-C2 / Å	1.290(7)	1.272(4)
C1-C2 / Å	1.454(8)	1.448(5)
C1-C5 / Å	1.454(8)	1.449(5)
C2-C3 / Å	1.435(1)	1.461(5)
C3-C4 / Å	1.421(8)	1.416(5)
C4-C4' / Å	1.423(1)	1.449(5)
C4-C5 / Å	1.41(1)	1.416(5)
N2-Co1-N1	78.64(2)	77.08(1)
N2-Co1-N3	155.4(1)	155.1(1)
N3-Co1-N1	77.17(2)	79.47(1)
N4-Co1-N1	82.13(2)	80.81(1)
N4-Co1-N2	85.36(1)	99.42(1)
N4-Co1-N3	95.75(2)	84.96(1)
O1-Co1-N1	175.4(2)	174.1(1)
O1-Co1-N2	105.6(1)	105.3(1)
O1-Co1-N3	98.70(2)	97.23(1)
O1-Co1-N4	96.28(2)	103.9 (1)
O2-Co1-N1	101.1(2)	94.88(1)
O2-Co1-N2	89.42(1)	87.36(1)
O2-Co1-N3	90.80(2)	86.34(1)
O2-Co1-N4	173.2(1)	171.8(1)
O2-Co1-O1	80.97(17)	79.97(1)
Σ / deg ^a	94.58	104.8
Θ / deg ^b	285.5	267.1
Diox MOS ^c	-1.05	-0.96

^aThe sum of the deviation of 12 unique *cis* ligand-metal-ligand angles from 90°. ^bThe sum of the deviation of 24 unique torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the *pseudo*-threefold axis from 60°. ^cEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting of C–C and C–O bond lengths to assign an apparent oxidation state: -1 for a semiquinonate ligand and -2 for a catecholate ligand.

Table S7. Bond valence sum (BVS)^a calculation for Co atoms in **4** and **5**.

	4	5
<i>T</i> / K	100	100
Atom	Co1	Co1
BVS	1.9	1.7

Table S8. Parameters of intermolecular interactions for **3**.

	3					
<i>T</i> / K	100		298		360	
	lengths / Å	angles / deg.	lengths / Å	angles / deg.	lengths / Å	angles / deg.
$\pi \cdots \pi / \text{Å}$	3.867	-	3.944	-	4.008	-
C–H \cdots $\pi / \text{Å}$	3.554	156.7	3.735	151.7	3.785	151.9

Table S9. Parameters Obtained from PHI Fitting for compounds **4** and **5** using two other fitting models.

	PHI fitting		PHI fitting	
	4	5	4	5
g_{Co}	2.10	2.00	2.04	2.00
$D (\text{cm}^{-1})$	45.0	28.6	59.7	24.0
$J (\text{cm}^{-1})$	32.8	150	121.2	137.7
$J_1 (\text{cm}^{-1})$	51.4	43.6	63.2	56.7
$J_2 (\text{cm}^{-1})$	–	–	-4.6	-3.5
$J_3 (\text{cm}^{-1})$	–	–	-0.8	0.0
$zJ' (\text{cm}^{-1})$	–	–	–	–
$TIP (\text{cm}^3 \text{mol}^{-1})$	3.6×10^{-4}	5.7×10^{-4}	–	–

Table S10. Spin states (*S*), total energies without (*E*) and with (*E*^{ZPE}) zero-point harmonic vibrations, total enthalpies (*H*²⁹⁸) and expectation values of the spin-squared operator (\hat{S}^2) of the compounds **3**–**5** calculated by the DFT UTPSSH/6-311++G(d,p) method.

Charge Distribution	<i>S</i>	<i>E</i> , a.u.	<i>E</i> ^{ZPE} , a.u.	<i>H</i> ²⁹⁸ , a.u.	\hat{S}^2
Compound 3					
{ls-Co ^{III} (tpa)–pyrene ^{Cat-Cat} –ls-Co ^{III} (tpa)}	0	-9499.602610	-9498.462301	-9498.380696	0.000
{ls-Co ^{III} (tpa)–pyrene ^{Cat-Sq} –hs-Co ^{II} (tpa)}	2	-9499.598192	-9498.461007	-9498.376493	6.016

$\beta\alpha^a$	1	-9499.596922	—	—	2.988
$\{\text{hs-Co}^{\text{II}}(\text{tpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{tpa})\}$	4	-9499.590856	-9498.457531	-9498.373622	20.032
$\alpha\beta\beta\alpha$	2	-9499.587535	—	—	7.984
$\alpha\alpha\beta\beta$	0	-9499.589450	—	—	4.004
$\alpha\beta\alpha\beta$	0	-9499.586315	—	—	3.949
$\alpha\beta\alpha\alpha$	3	-9499.587840	—	—	12.975
$\beta\alpha\alpha\alpha$	1	-9499.589286	—	—	5.009
Compound 4					
$\{\text{ls-Co}^{\text{III}}(\text{Metpa})-\text{pyrene}^{\text{Cat-Cat}}-\text{ls-Co}^{\text{III}}(\text{Metpa})\}$	0	-9578.256293	-9577.060359	-9576.974602	0.000
$\{\text{ls-Co}^{\text{III}}(\text{Metpa})-\text{pyrene}^{\text{Cat-Sq}}-\text{hs-Co}^{\text{II}}(\text{Metpa})\}$	2	-9578.257212	-9577.064794	-9576.976897	6.016
$\beta\alpha$	1	-9578.255285	—	—	3.005
$\{\text{hs-Co}^{\text{II}}(\text{Metpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{Metpa})\}$	4	-9578.255743	-9577.066804	-9576.977053	20.031
$\alpha\beta\beta\alpha$	2	-9578.250746	—	—	8.013
$\alpha\alpha\beta\beta$	0	-9578.253419	—	—	4.003
$\alpha\beta\alpha\beta$	0	-9578.249333	—	—	3.974
$\alpha\beta\alpha\alpha$	3	-9578.251560	—	—	12.991
$\beta\alpha\alpha\alpha$	1	-9578.252957	—	—	5.023
Compound 5					
$\{\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Cat-Cat}}-\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})\}$	0	-9656.900813	-9655.649592	-9655.561084	0.000
$\{\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Cat-Sq}}-\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})\}$	2	-9656.909564	-9655.661944	-9655.572274	6.016
$\beta\alpha$	1	-9656.907611	—	—	3.010
$\{\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})\}$	4	-9656.915134	-9655.671404	-9655.579476	20.031
$\alpha\beta\beta\alpha$	2	-9656.911122	—	—	8.019
$\alpha\alpha\beta\beta$	0	-9656.913667	—	—	4.002
$\alpha\beta\alpha\beta$	0	-9656.908457	—	—	3.837
$\alpha\beta\alpha\alpha$	3	-9656.911670	—	—	12.992
$\beta\alpha\alpha\alpha$	1	-9656.913139	—	—	5.024

^a α corresponds to spin-up, β corresponds to spin-down; the order of the paramagnetic centers in $\{\text{Co}^{\text{II}}-\text{pyrene}^{\text{Sq-Sq}}-\text{Co}^{\text{II}}\}$ charge distributions: (1) hs-Co^{II} (2) Sq (3) Sq (4) hs-Co^{II}

Table S11. Relative energies without (ΔE) and with (E^{ZPE}) zero-point harmonic vibrations, relative enthalpies (ΔH^{298}) (all values are given in kcal mol⁻¹) of charge distributions of the compounds **3-5** calculated by the DFT UTPSSH/6-311++G(d,p) method.

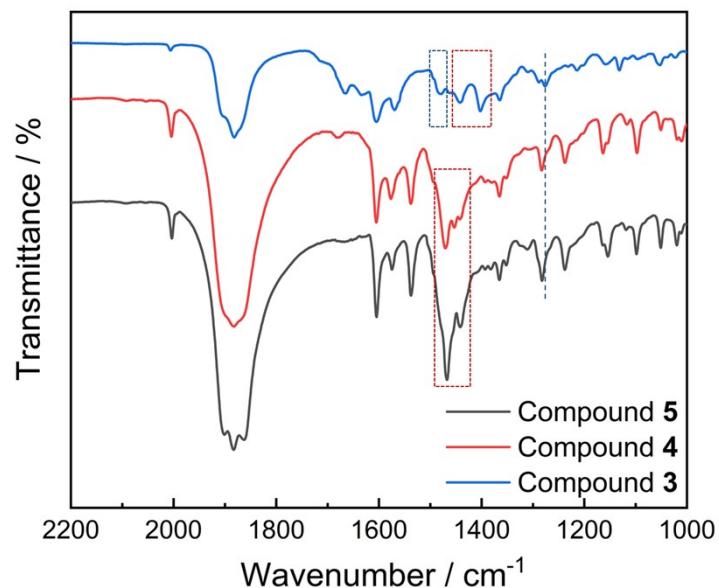
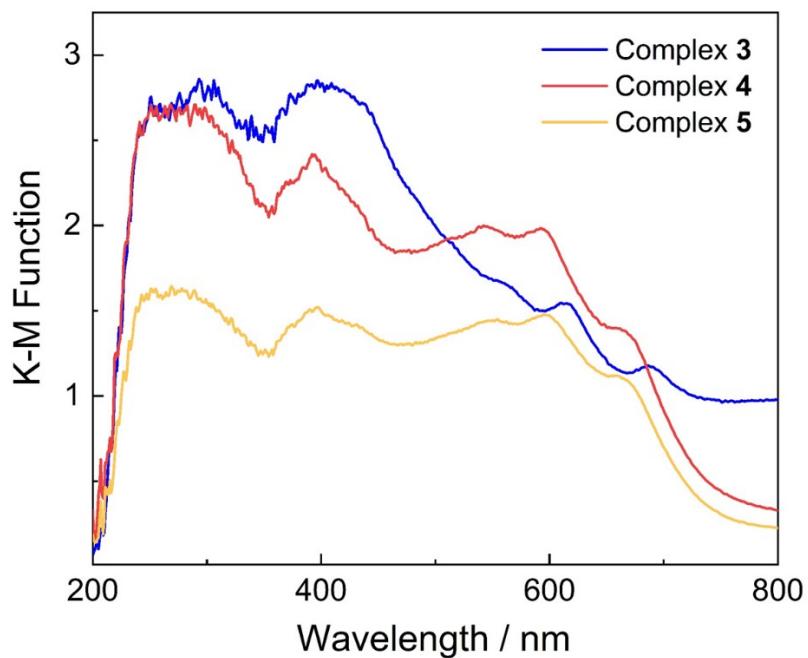
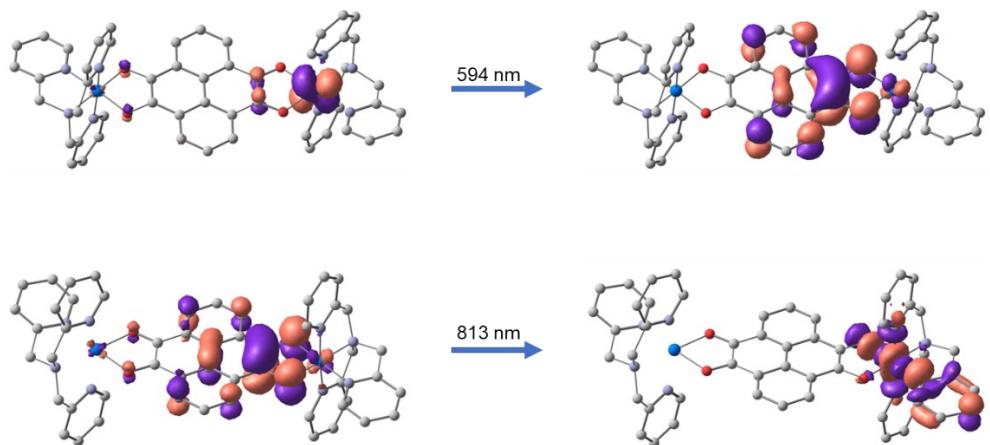
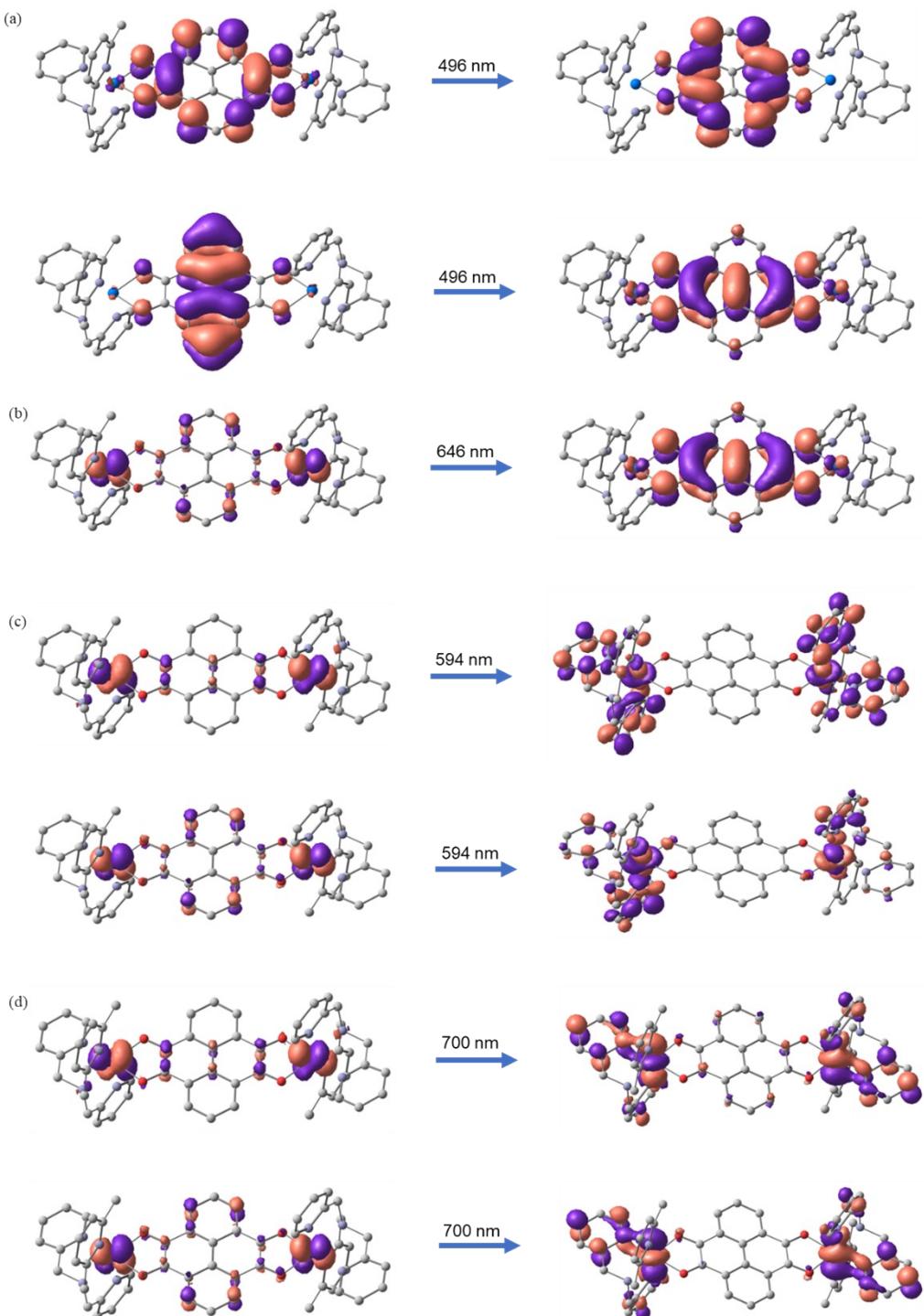

Charge Distribution	ΔE	E^{ZPE}	H^{298}
3 $\{\text{ls-Co}^{\text{III}}(\text{tpa})-\text{pyrene}^{\text{Cat-Cat}}-\text{ls-Co}^{\text{III}}(\text{tpa})\}$	0.0	0.0	0.0
$\{\text{ls-Co}^{\text{III}}(\text{tpa})-\text{pyrene}^{\text{Cat-Sq}}-\text{hs-Co}^{\text{II}}(\text{tpa})\}$	2.8	0.8	2.6
$\{\text{hs-Co}^{\text{II}}(\text{tpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{tpa})\}$	7.4	3.0	4.4
4 $\{\text{ls-Co}^{\text{III}}(\text{Metpa})-\text{pyrene}^{\text{Cat-Cat}}-\text{ls-Co}^{\text{III}}(\text{Metpa})\}$	0.6	4.0	1.5
$\{\text{ls-Co}^{\text{III}}(\text{Metpa})-\text{pyrene}^{\text{Cat-Sq}}-\text{hs-Co}^{\text{II}}(\text{Metpa})\}$	0.0	1.3	0.1
$\{\text{hs-Co}^{\text{II}}(\text{Metpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{Metpa})\}$	0.9	0.0	0.0
5 $\{\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Cat-Cat}}-\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})\}$	9.0	13.7	11.5
$\{\text{ls-Co}^{\text{III}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Cat-Sq}}-\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})\}$	3.5	5.9	4.5
$\{\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})-\text{pyrene}^{\text{Sq-Sq}}-\text{hs-Co}^{\text{II}}(\text{Me}_2\text{tpa})\}$	0.0	0.0	0.0

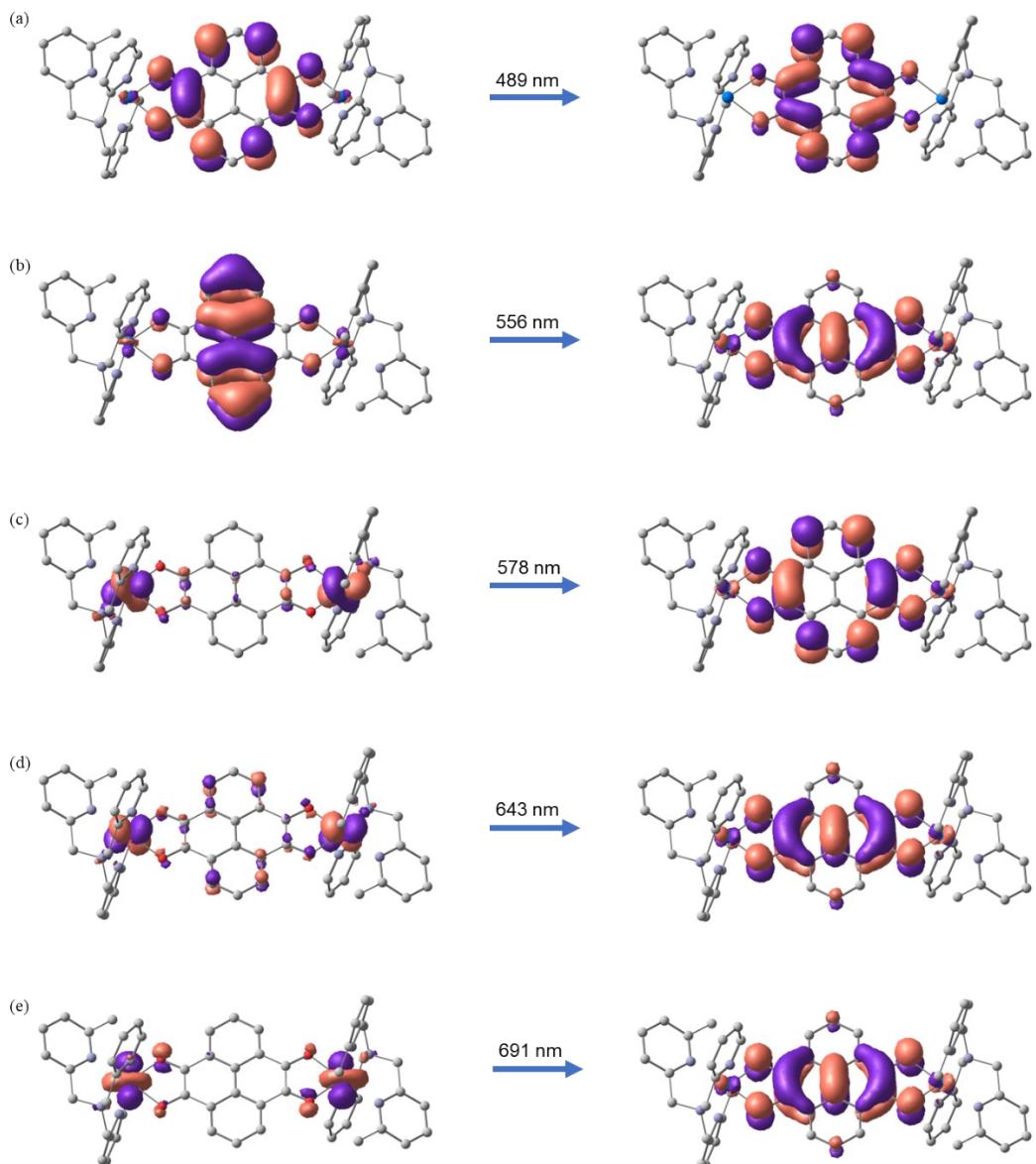
Table S12. Exchange coupling parameters (J , given in cm^{-1}) in the compounds **3-5** calculated by the DFT UTPSSh/6-311++G(d,p) method.

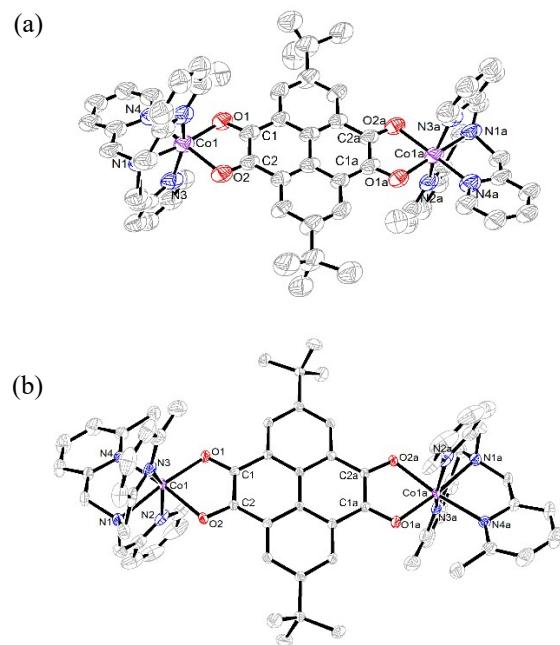

Charge Distribution	$J(\text{hs-Co}^{\text{II}}-\text{Sq1})^a$	$J(\text{hs-Co}^{\text{II}}-\text{Sq2})$	$J(\text{Sq1-Sq2})$	$J(\text{hs-Co}^{\text{II}}-\text{hs-Co}^{\text{II}})$
Compound 3				
{ls-Co ^{III} (tpa)-pyrene ^{Cat-Sq} -hs-Co ^{II} (tpa)}	92	—	—	—
{hs-Co ^{II} (tpa)-pyrene ^{Sq-Sq} -hs-Co ^{II} (tpa)}	59	2	147	-1
Compound 4				
{ls-Co ^{III} (Metpa)-pyrene ^{Cat-Sq} -hs-Co ^{II} (Metpa)}	140	—	—	—
{hs-Co ^{II} (Metpa)-pyrene ^{Sq-Sq} -hs-Co ^{II} (Metpa)}	83	8	173	3
Compound 5				
{ls-Co ^{III} (Me ₂ tpa)-pyrene ^{Cat-Sq} -hs-Co ^{II} (Me ₂ tpa)}	143	—	—	—
{hs-Co ^{II} (Me ₂ tpa)-pyrene ^{Sq-Sq} -hs-Co ^{II} (Me ₂ tpa)}	83	-11	181	4

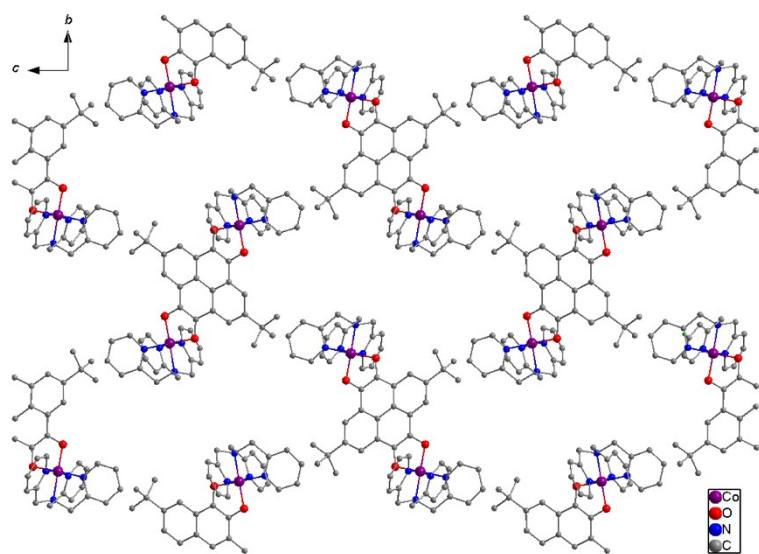
^a Sq1 represents the closest (coordinating) dioxolene and Sq2 represents the dioxolene on the other side of pyrene.

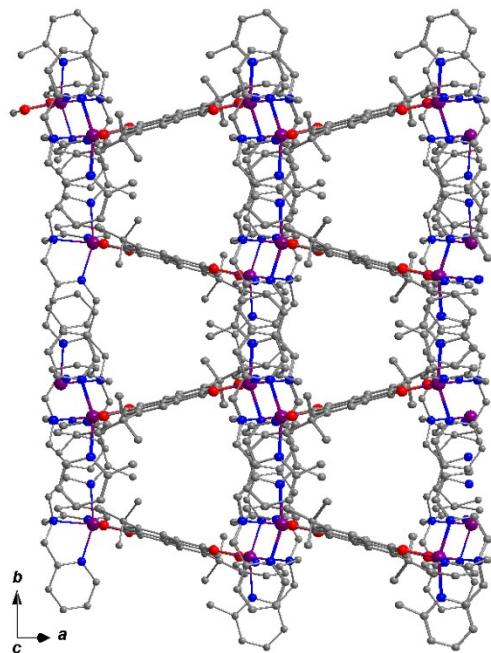

3. Additional Figures

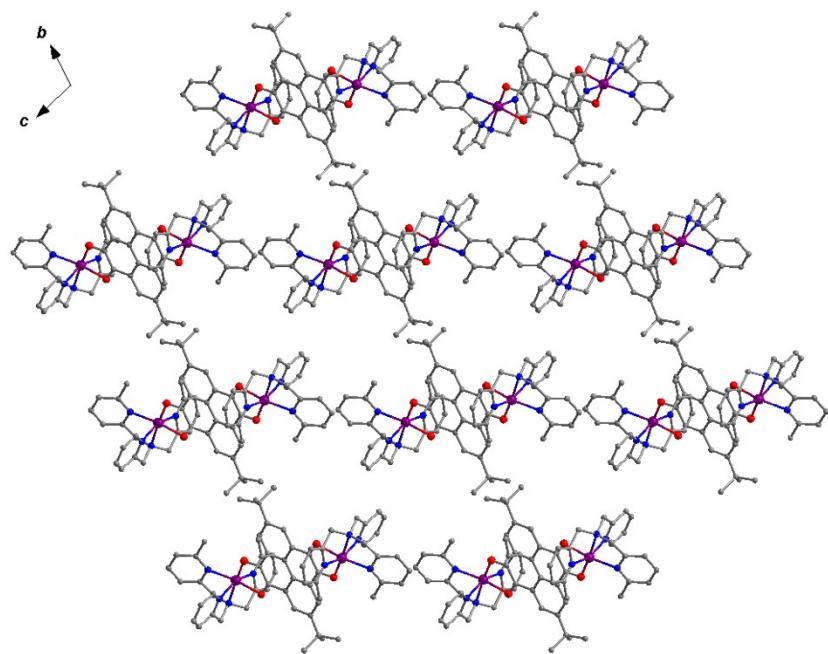

Figure S1. IR spectra of 3-5.

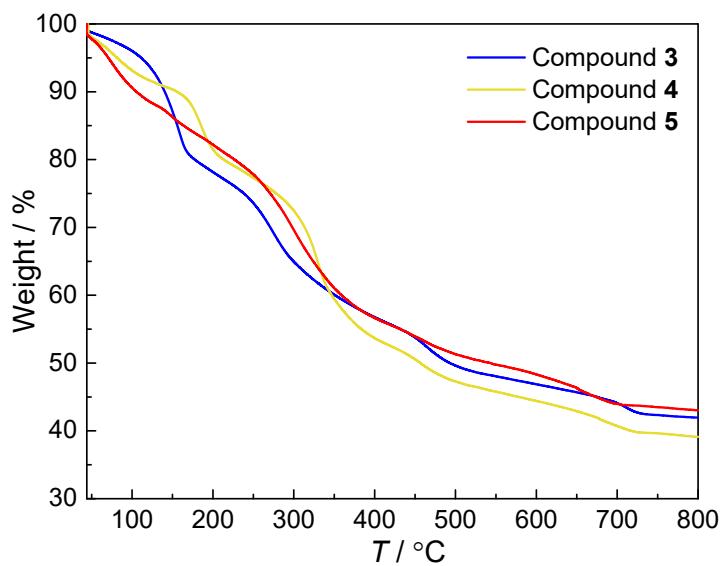

Figure S2. Solid-state UV-Vis diffuse reflectance spectra of 3-5.

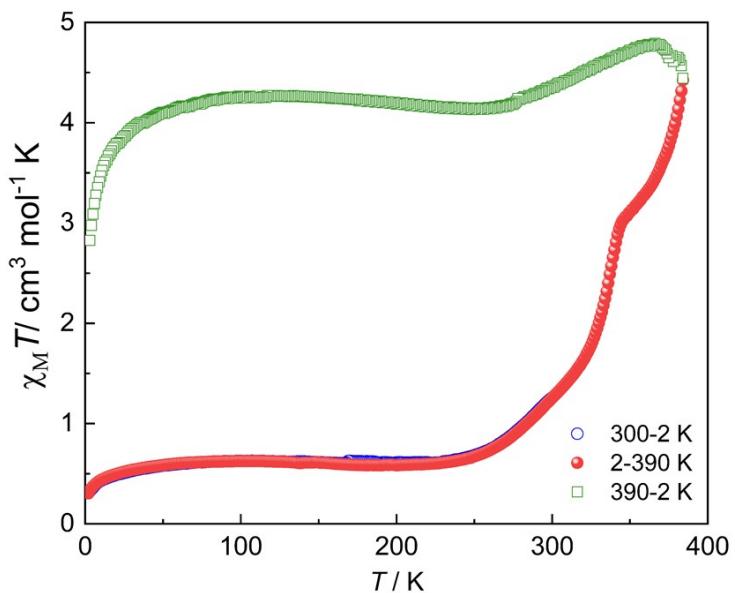

Figure S3. Corresponding orbitals for Compound **3** in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. The top one at 594 nm corresponds to a MLCT transition from $\text{Co}^{\text{II-HS}}$ to the π^* orbital of the semiquinone. The bottom one at 813 nm can be assigned to a LMCT transition. Note that the calculation was conducted for the $\{\text{Co}^{\text{III-LS}}\text{-pyrene}^{\text{Cat-Sq}}\text{-Co}^{\text{II-HS}}\}^{2+}$ electronic state.

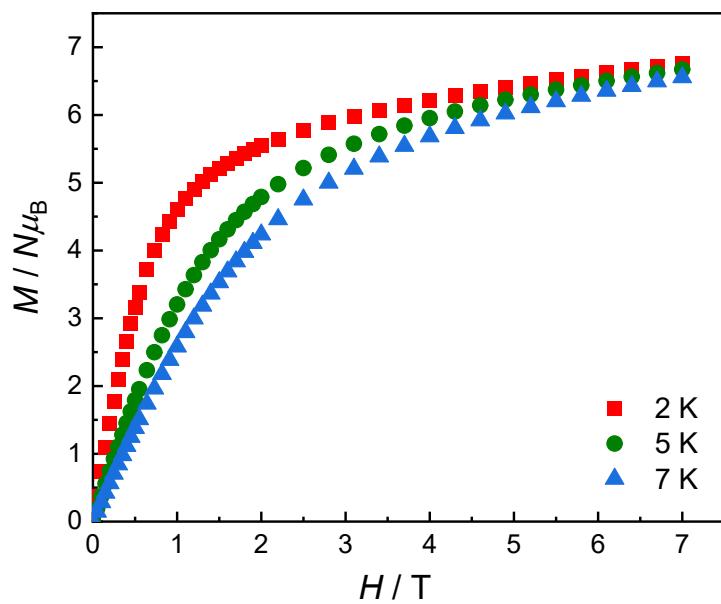

Figure S4. Corresponding orbitals for Compound 4 in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm transition corresponds to internal semiquinone ligand transitions within the pyrene^{Sq-Sq} ligand; (b) 646 nm transition can be assigned to a MLCT transitions from Co^{II-HS} to the π^* orbital of semiquinone; (c) 594 nm and (d) 700 nm transitions can be assigned to MLCT transitions from Co^{II-HS} to the π^* orbital of MeTPA. Note that the calculation was conducted for the $\{\text{Co}^{\text{II-HS}}\text{-pyrene}^{\text{Sq-Sq}}\text{-Co}^{\text{II-HS}}\}^{2+}$ electronic state.

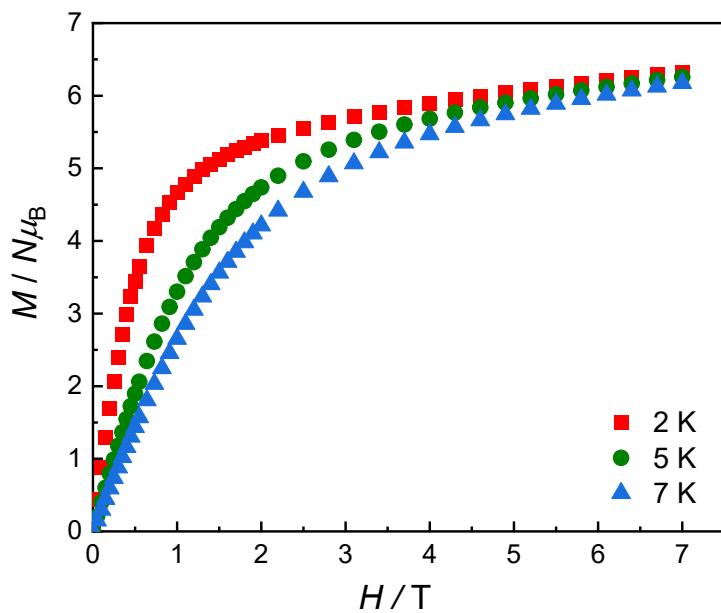

Figure S5. Corresponding orbitals for Compound **5** in electronic absorption spectroscopy, as calculated by the TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm and (b) 556 nm transitions correspond to internal semiquinone ligand transitions within the pyrene^{Sq-Sq} ligand; (c) 556 nm, (d) 643 nm, and (e) 691 nm transitions can be assigned to MLCT transitions from Co^{II-HS} to the π^* orbital of semiquinone. Note that the calculation was conducted for the $\{\text{Co}^{\text{II-HS}}\text{--pyrene}^{\text{Sq-Sq}}\text{--Co}^{\text{II-HS}}\}^{2+}$ electronic state.

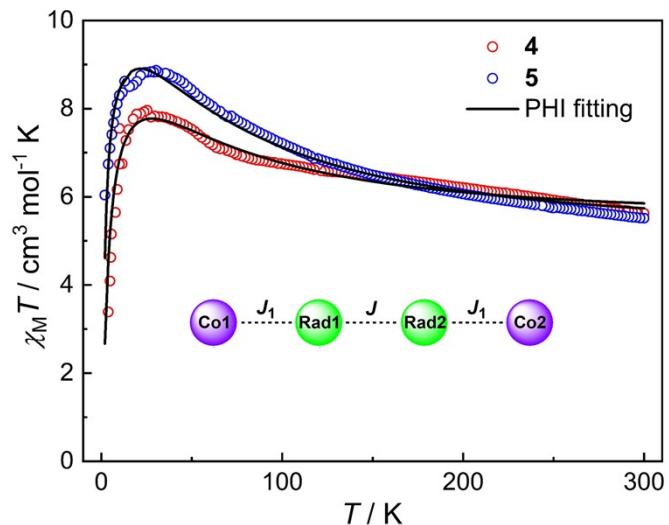

Figure S6. Perspective view of the dinuclear cations of **4** (a) and **5** (b) with 50% thermal ellipsoids. Hydrogen atoms, solvent molecules, and counter-ions are omitted for clarity. Symmetry codes: a) $1 - x, 1 - y, 2 - z$; b) $-x, 2 - y, 2 - z$.

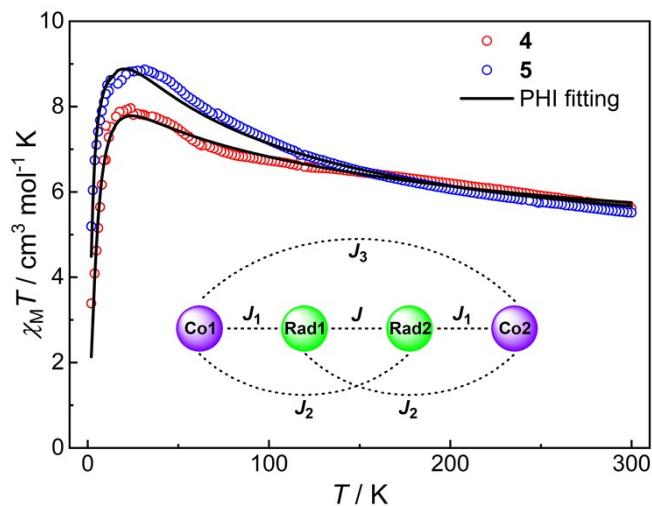

Figure S7. The packing diagram of **3**. Hydrogen atoms, anions, and guest solvent molecules are omitted for clarity.

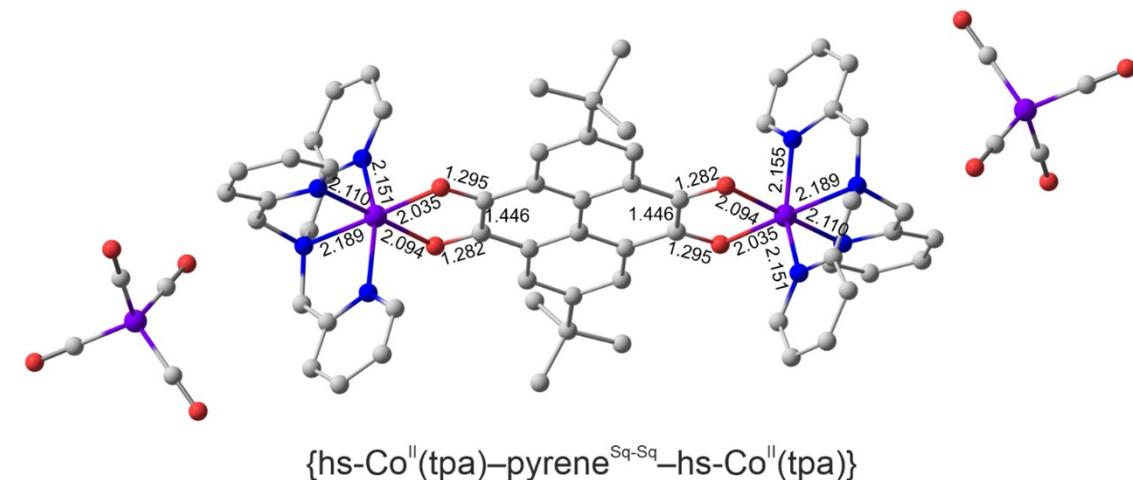
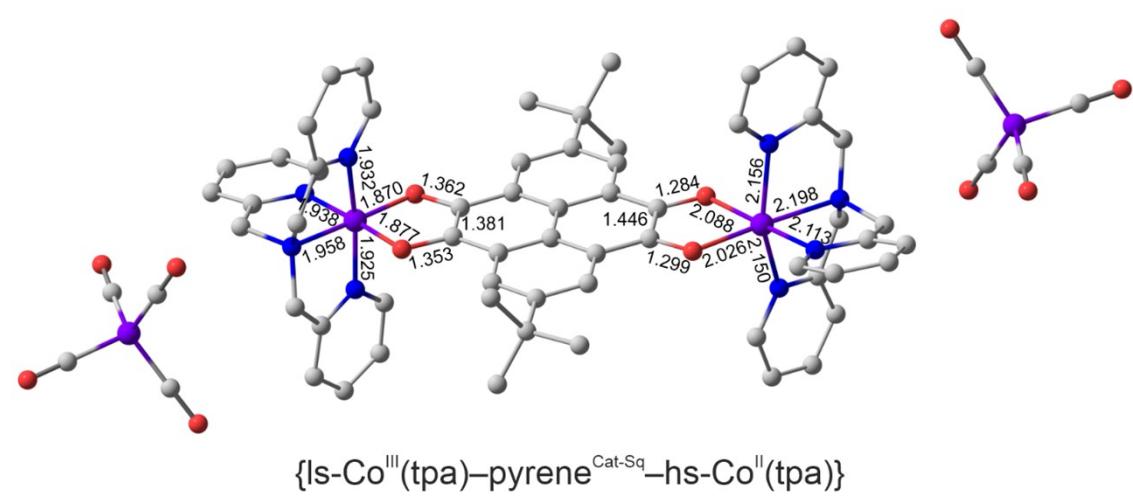
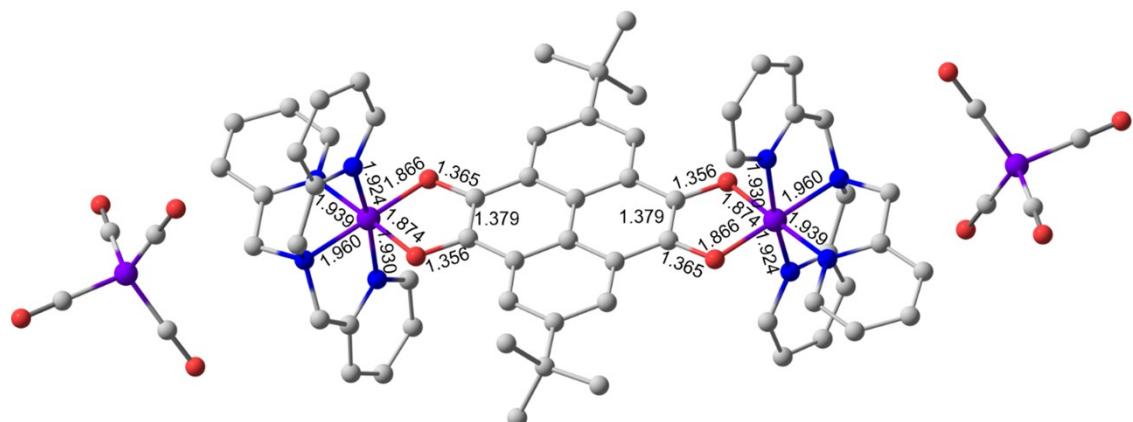

Figure S8. The packing diagrams of **4**. color code: Co, purple; O, red; N, blue; C, grey.

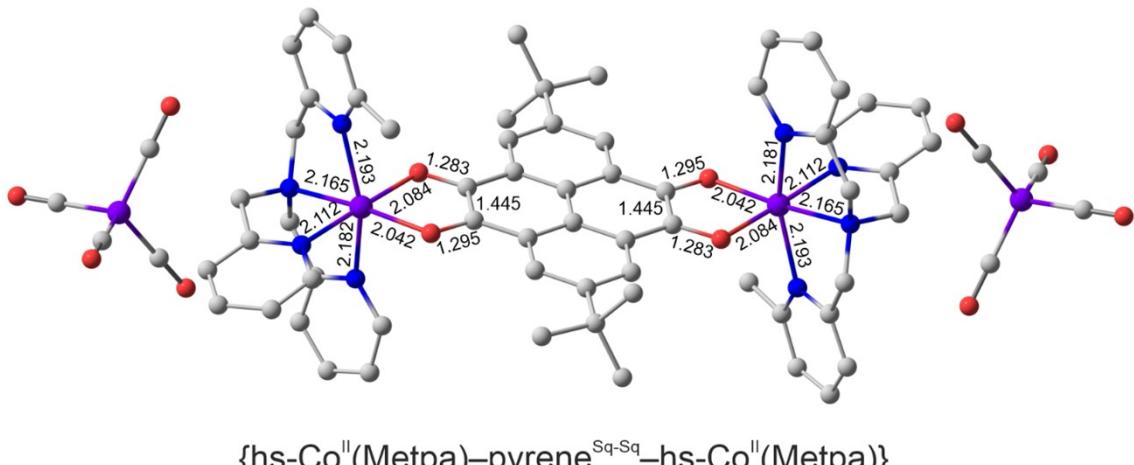
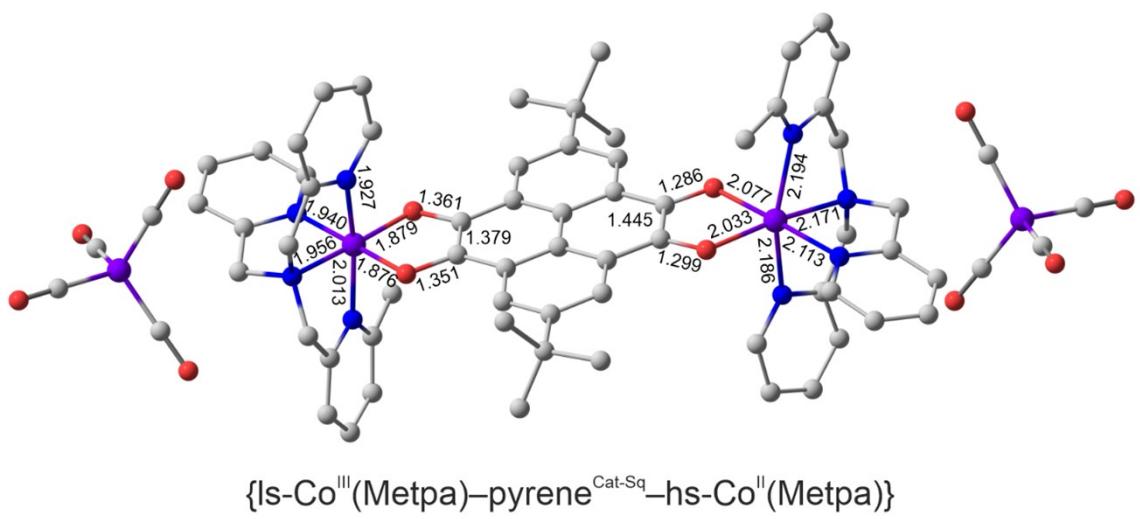

Figure S9. The packing diagrams of **5**. color code: Co, purple; O, red; N, blue; C, grey.

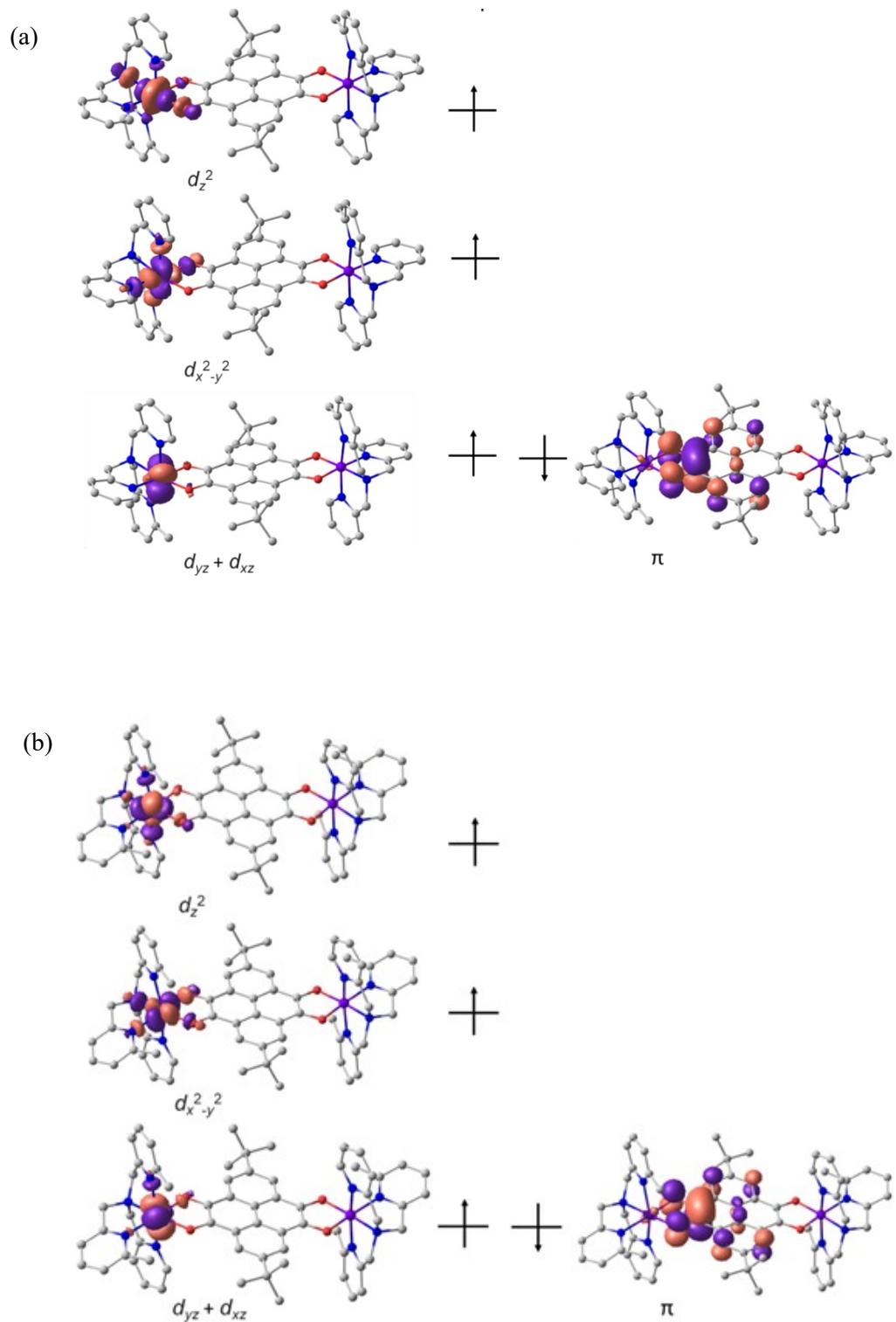

Figure S10. Thermogravimetric analysis of **3** -**5**.

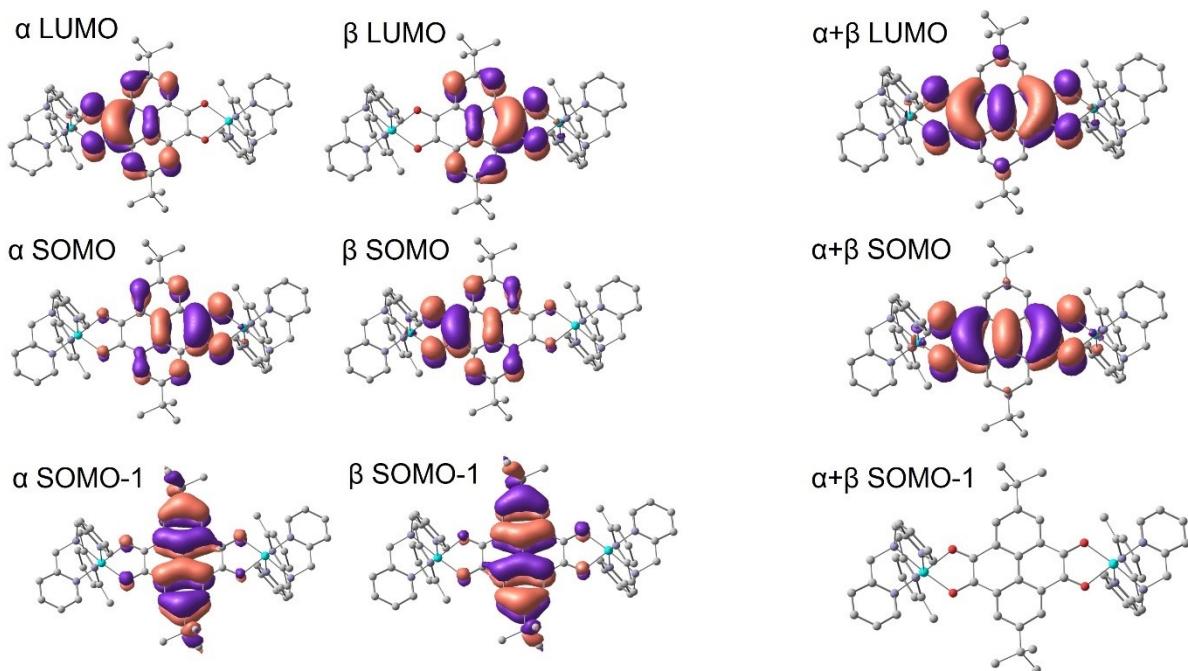

Figure S11. $\chi_M T$ versus T plot for compound **3** in the range of 300-2-390-2 K. Applied field: 5000 Oe.


Figure S12. M versus H plots at 2 K, 5 K and 7 K for 4.




Figure S13. M versus H plots at 2 K, 5 K and 7 K for 5.



Figure S14. Magnetic susceptibilities of compounds **4** and **5** under applied field of 5000 Oe. Solid black lines represent the fitting results by the PHI program neglecting intermolecular magnetic interactions based on equation 1. Inset: the magnetic coupling parameters of **4** and **5**. Large inconsistency in J coupling value was observed between **4** and **5** using this fitting model.


Figure S15. Magnetic susceptibilities of compounds **4** and **5** under applied field of 5000 Oe. Solid black lines represent the fitting results by the PHI program based on equation 1 including long-distance coupling constants J_2 and J_3 during data fitting. Inset: the magnetic coupling parameters of **4** and **5**. A very large D value (59.7 cm^{-1}) was used during data fit for compound **4**, which is unlikely.


Figure S16. Optimized geometries of the compound **3** in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method. Here and in **Figures S17 – S20** hydrogen atoms are omitted for clarity.

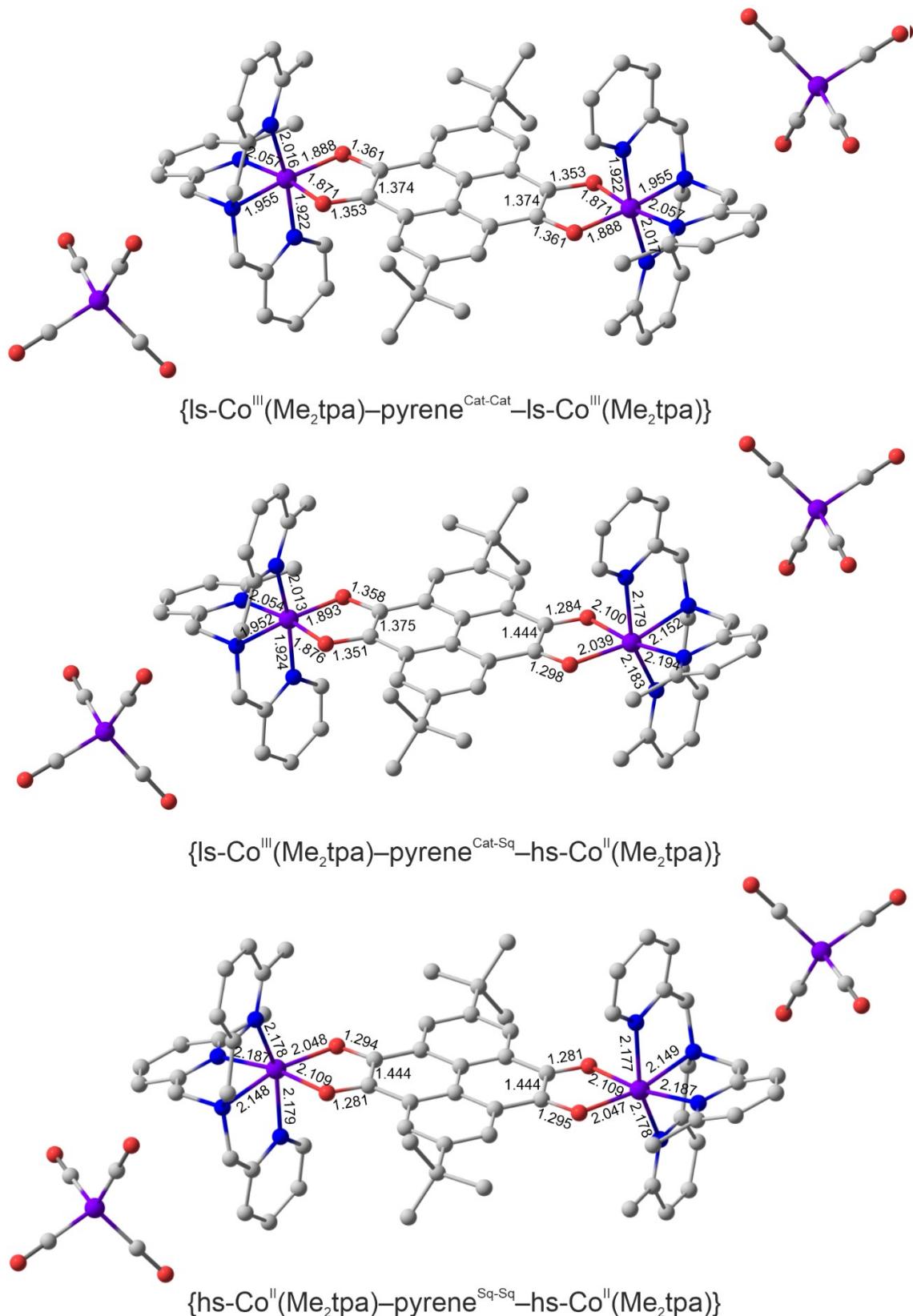

Figure S17. Optimized geometries of the compound **4** in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.

Figure S18. Corresponding orbitals for **4** (a) and **5** (b) visualizing the $\text{Co}^{\text{II-HS}}\text{-Sq1}$ exchange interactions, as calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = $0.03 \text{ e } \text{\AA}^{-3}$).

Figure S19. Corresponding orbitals for Zn-SQ-SQ-Zn analogs of **4** and **5** visualizing the $\text{Co}^{\text{II-HS}}\text{-Sq1}$ exchange interactions, as calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = $0.03 \text{ e } \text{\AA}^{-3}$).

Figure S20. Optimized geometries of the compound **5** in the three charge distributions, as calculated by the DFT UTPSSh/6-311++G(d,p) method.