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1. Additional Tables

Table S1. Frequencies (in cm-1) of stretching vibrations, according to the DFT UTPSSh/6-311++G(d,p) 
calculations.

Complex CO ([Co(CO)4]–) C–N (Mentpa) C–O/C=O 
(semiquinone)

C–O 
(catecholate)

3, {CoIII-LS–pyreneCat-Sq–CoII-HS}2+ 2114
2107
2033
2029
1990
1986
1977
1974

1660
1659
1632
1631

1500 1448

4, {CoII-HS–pyreneSq-Sq–CoII-HS}2+ 2109
2029
1985
1977

1661
1660
1633

1496 –

5, {CoII-HS–pyreneSq-Sq–CoII-HS}2+ 2109
2030
1986
1978

1661
1659
1634

1497 –
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Table S2. Crystal data and structural refinements for 3.

3

T / K 100 298 360

Formula C82H74Co4N8O12 C68H58Co4N8O12 C68H58Co4N8O12

Mr / g mol–1 1599.21 1414.94 1414.94

Crystal system Monoclinic

Space group P21/c

a / Å 8.7470(5) 8.8691(8) 8.9372(4)

b / Å 17.2680(7) 17.7249(14) 17.7258(8)

c / Å 24.2915(1) 24.8969(18) 24.7614(10)

α / ° 90 90 90

β / ° 92.161(4) 91.742(8) 92.352(4)

γ / ° 90 90 90

V / Å3 3666.5(3) 3912.1(5) 3919.4(3)

Z 2

ρcalc / g cm–3 1.449 1.201 1.199

μ / mm–1 0.959 0.890 0.888

F(000) 1652.0 1452.0 1452.0

Rint / % 7.34 7.15 3.86

R1 [I  2σ(I)] 0.0732 0.0760 0.0738

wR2 (all data) 0.1936 0.2270 0.2432

CCDC no. 2224738 2224741 2224744
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Table S3. Selected bond lengths and angles for 3.

3

T / K 100 298 360

Co1-O1 / Å 1.868(2) 1.896(3) 1.976(3)
Co1-O2 / Å 1.879(3) 1.930(3) 1.933(3)

Co1-N1 / Å 1.965(3) 2.008(3) 2.061(4)

Co1-N2 / Å 1.925(3) 1.968(3) 2.008(4)

Co1-N3 / Å 1.920(3) 1.971(3) 2.016(4)

Co1-N4 / Å 1.922(3) 1.968(3) 1.997(4)

O1-C1 / Å 1.358(4) 1.342(4) 1.301(6)

O2-C2 / Å 1.352(4) 1.330(4) 1.327(5)

C1-C2 / Å 1.380(5) 1.402(5) 1.400(6)

C1-C5 / Å 1.430(5) 1.428(5) 1.450(6)

C2-C3 / Å 1.438(5) 1.432(5) 1.414(6)

C3-C4 / Å 1.426(5) 1.410(5) 1.421(5)

C4-C4 / Å 1.427(5) 1.428(4) 1.441(6)

C4-C5 / Å 1.423(4) 1.421(4) 1.420(6)
N2-Co1-N1 85.62(1) 83.58(1) 82.16(2)

N2-Co1-N3 170.0(7) 166.5(1) 163.4(1)

N3-Co1-N1 84.73(1) 83.06(1) 81.67(1)

N4-Co1-N1 86.12(1) 84.01(1) 83.08(1)

N4-Co1-N2 92.19(1) 91.66(1) 88.88(1)

N4-Co1-N3 89.89(1) 89.12(1) 92.68(1)

O1-Co1-N1 178.6(1) 178.6(1) 179.1(1)

O1-Co1-N2 95.00(1) 97.05(1) 87.88(2)

O1-Co1-N3 94.71(1) 96.33(1) 98.54(1)

O1-Co1-N4 92.57 (1) 94.78(1) 96.10(1)

O2-Co1-N1 91.78(1) 94.50(1) 96.17(1)

O2-Co1-N2 89.38(1) 90.39(1) 87.82(1)

O2-Co1-N3 88.19(1) 88.47(1) 90.39(1)

O2-Co1-N4 177.28(1) 177.3(1) 176.6(1)

O2-Co1-O1 89.50(1) 86.69(1) 84.62(1)

Σ / dega 32.81 49.76 63.32

Θ / degb 88.85 135.9 175.6

Diox MOSc -1.8 -1.6 -1.4
aThe sum of the deviation of 12 unique cis ligand-metal-ligand angles from 90. bThe sum of the deviation of 24 unique 

torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold 

axis from 60. cEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting 

of C–C and C–O bond lengths to assign an apparent oxidation state: −1 for a semiquinonate ligand and −2 for a catecholate 

ligand.
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Table S4. Bond valence sum (BVS)a calculation for Co atoms in 3.

3

T / K 100 298 360

Atom Co1 Co1 Co1

BVS 3.1 2.8 2.5

Table S5. Crystal data and structural refinements for 4 and 5.

4 5

T / K 100 100

Formula C70H62Co4N8O12 C74H68Co4Cl6N8O12

Mr / g mol–1 1442.99 1709.78

Crystal system Monoclinic Triclinic

Space group P21/c P1̅

a / Å 14.477(2) 11.8002(5)

b / Å 15.1685(7) 12.6052(7)

c / Å 24.167(3) 16.1129(8)

α / ° 90 103.951(4)

β / ° 135.18(3) 97.024(4)

γ / ° 90 106.222(4)

V / Å3 3740.7(14) 2186.65(19)

Z 2 1

ρcalc / g cm–3 1.281 1.298

μ / mm–1 0.932 0.985

F(000) 1484.0 874.0

Rint / % 5.88 6.80

R1 [I  2σ(I)] 0.1286 0.0774

wR2 (all data) 0.3994 0.2308

CCDC no. 2287990 2158906
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Table S6. Selected bond lengths and angles for 4 and 5.

4 5
T / K 100 100

Co1-O1 / Å 2.006(6) 2.015(3)

Co1-O2 / Å 2.076(8) 2.129(2)

Co1-N1 / Å 2.130(7) 2.160(4)

Co1-N2 / Å 2.150(3) 2.151(4)

Co1-N3 / Å 2.146(4) 2.186(3)

Co1-N4 / Å 2.074(6) 2.186(3)

O1-C1 / Å 1.274(9) 1.291(4)

O2-C2 / Å 1.290(7) 1.272(4)

C1-C2 / Å 1.454(8) 1.448(5)

C1-C5 / Å 1.454(8) 1.449(5)

C2-C3 / Å 1.435(1) 1.461(5)

C3-C4 / Å 1.421(8) 1.416(5)

C4-C4’ / Å 1.423(1) 1.449(5)

C4-C5 / Å 1.41(1) 1.416(5)

N2-Co1-N1 78.64(2) 77.08(1)

N2-Co1-N3 155.4(1) 155.1(1)

N3-Co1-N1 77.17(2) 79.47(1)

N4-Co1-N1 82.13(2) 80.81(1)

N4-Co1-N2 85.36(1) 99.42(1)

N4-Co1-N3 95.75(2) 84.96(1)

O1-Co1-N1 175.4(2) 174.1(1)

O1-Co1-N2 105.6(1) 105.3(1)

O1-Co1-N3 98.70(2) 97.23(1)

O1-Co1-N4 96.28(2) 103.9 (1)

O2-Co1-N1 101.1(2) 94.88(1)

O2-Co1-N2 89.42(1) 87.36(1)

O2-Co1-N3 90.80(2) 86.34(1)

O2-Co1-N4 173.2(1) 171.8(1)

O2-Co1-O1 80.97(17) 79.97(1)

Σ / dega 94.58 104.8

Θ / degb 285.5 267.1

Diox MOSc -1.05 -0.96
aThe sum of the deviation of 12 unique cis ligand-metal-ligand angles from 90. bThe sum of the deviation of 24 unique 

torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold 

axis from 60. cEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting 

of C–C and C–O bond lengths to assign an apparent oxidation state: −1 for a semiquinonate ligand and −2 for a catecholate 

ligand.
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Table S7. Bond valence sum (BVS)a calculation for Co atoms in 4 and 5.

4 5

T / K 100 100

Atom Co1 Co1

BVS 1.9 1.7

Table S8. Parameters of intermolecular interactions for 3.

3

T / K 100 298 360

lengths / Å angles / deg. lengths / Å angles / deg. lengths / Å angles / deg.

π···π / Å 3.867 - 3.944 - 4.008 -

CHπ / Å 3.554 156.7 3.735 151.7 3.785 151.9

Table S9. Parameters Obtained from PHI Fitting for compounds 4 and 5 using two other fitting models.

PHI fitting PHI fitting
4 5 4 5

𝑔𝐶𝑜 2.10 2.00 2.04 2.00

D ( )cm ‒ 1 45.0 28.6 59.7 24.0

( )𝐽 cm ‒ 1 32.8 150 121.2 137.7

( )𝐽1 cm ‒ 1 51.4 43.6 63.2 56.7

( )𝐽2 cm ‒ 1 – – -4.6 -3.5

( )𝐽3 cm ‒ 1 – – -0.8 0.0

( )𝑧𝐽' cm ‒ 1 – – – –

( )𝑇𝐼𝑃 cm3 𝑚𝑜𝑙 ‒ 1 3.6  10-4 5.7  10-4 – –

Table S10. Spin states (S), total energies without (E) and with (EZPE) zero-point harmonic vibrations, total 
enthalpies (H298) and expectation values of the spin-squared operator (Ŝ2) of the compounds 3 -5 calculated by the 
DFT UTPSSh/6-311++G(d,p) method.

Charge Distribution S E, a.u. EZPE, a.u. H298, a.u. Ŝ2

Compound 3
{ls-CoIII(tpa)–pyreneCat-Cat–ls-CoIII(tpa)} 0 -9499.602610 -9498.462301 -9498.380696 0.000
{ls-CoIII(tpa)–pyreneCat-Sq–hs-CoII(tpa)} 2 -9499.598192 -9498.461007 -9498.376493 6.016
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βα a 1 -9499.596922 – – 2.988
{hs-CoII(tpa)–pyreneSq-Sq–hs-CoII(tpa)} 4 -9499.590856 -9498.457531 -9498.373622 20.032
αββα 2 -9499.587535 – – 7.984
ααββ 0 -9499.589450 – – 4.004
αβαβ 0 -9499.586315 – – 3.949
αβαα 3 -9499.587840 – – 12.975
βααα 1 -9499.589286 – – 5.009
Compound 4
{ls-CoIII(Metpa)–pyreneCat-Cat–ls-CoIII(Metpa)} 0 -9578.256293 -9577.060359 -9576.974602 0.000
{ls-CoIII(Metpa)–pyreneCat-Sq–hs-CoII(Metpa)} 2 -9578.257212 -9577.064794 -9576.976897 6.016
βα 1 -9578.255285 – – 3.005
{hs-CoII(Metpa)–pyreneSq-Sq–hs-CoII(Metpa)} 4 -9578.255743 -9577.066804 -9576.977053 20.031
αββα 2 -9578.250746 – – 8.013
ααββ 0 -9578.253419 – – 4.003
αβαβ 0 -9578.249333 – – 3.974
αβαα 3 -9578.251560 – – 12.991
βααα 1 -9578.252957 – – 5.023
Compound 5
{ls-CoIII(Me2tpa)–pyreneCat-Cat–ls-CoIII(Me2tpa)} 0 -9656.900813 -9655.649592 -9655.561084 0.000
{ls-CoIII(Me2tpa)–pyreneCat-Sq–hs-CoII(Me2tpa)} 2 -9656.909564 -9655.661944 -9655.572274 6.016
βα 1 -9656.907611 – – 3.010
{hs-CoII(Me2tpa)–pyreneSq-Sq–hs-CoII(Me2tpa)} 4 -9656.915134 -9655.671404 -9655.579476 20.031
αββα 2 -9656.911122 – – 8.019
ααββ 0 -9656.913667 – – 4.002
αβαβ 0 -9656.908457 – – 3.837
αβαα 3 -9656.911670 – – 12.992
βααα 1 -9656.913139 – – 5.024

a α corresponds to spin-up, β corresponds to spin-down; the order of the paramagnetic centers in {CoII–pyreneSq-

Sq–CoII} charge distributions: (1) hs-CoII (2) Sq (3) Sq (4) hs-CoII

Table S11. Relative energies without (ΔE) and with (EZPE) zero-point harmonic vibrations, relative enthalpies 
(ΔH298) (all values are given in kcal mol–1) of charge distributions of the compounds 3-5 calculated by the DFT 
UTPSSh/6-311++G(d,p) method.

Charge Distribution ΔE EZPE H298

3 {ls-CoIII(tpa)–pyreneCat-Cat–ls-CoIII(tpa)} 0.0 0.0 0.0
{ls-CoIII(tpa)–pyreneCat-Sq–hs-CoII(tpa)} 2.8 0.8 2.6
{hs-CoII(tpa)–pyreneSq-Sq–hs-CoII(tpa)} 7.4 3.0 4.4

4 {ls-CoIII(Metpa)–pyreneCat-Cat–ls-CoIII(Metpa)} 0.6 4.0 1.5
{ls-CoIII(Metpa)–pyreneCat-Sq–hs-CoII(Metpa)} 0.0 1.3 0.1
{hs-CoII(Metpa)–pyreneSq-Sq–hs-CoII(Metpa)} 0.9 0.0 0.0

5 {ls-CoIII(Me2tpa)–pyreneCat-Cat–ls-CoIII(Me2tpa)} 9.0 13.7 11.5
{ls-CoIII(Me2tpa)–pyreneCat-Sq–hs-CoII(Me2tpa)} 3.5 5.9 4.5
{hs-CoII(Me2tpa)–pyreneSq-Sq–hs-CoII(Me2tpa)} 0.0 0.0 0.0
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Table S12. Exchange coupling parameters (J, given in cm–1) in the compounds 3-5 calculated by the DFT 
UTPSSh/6-311++G(d,p) method.

Charge Distribution J (hs-CoII-Sq1)a J (hs-CoII-Sq2) J (Sq1-Sq2) J (hs-CoII-hs-CoII)
Compound 3
{ls-CoIII(tpa)–pyreneCat-Sq–hs-CoII(tpa)} 92 – – –
{hs-CoII(tpa)–pyreneSq-Sq–hs-CoII(tpa)} 59 2 147 –1
Compound 4
{ls-CoIII(Metpa)–pyreneCat-Sq–hs-CoII(Metpa)} 140 – – –
{hs-CoII(Metpa)–pyreneSq-Sq–hs-CoII(Metpa)} 83 8 173 3
Compound 5
{ls-CoIII(Me2tpa)–pyreneCat-Sq–hs-CoII(Me2tpa)} 143 – – –
{hs-CoII(Me2tpa)–pyreneSq-Sq–hs-CoII(Me2tpa)} 83 -11 181 4

a Sq1 represents the closest (coordinating) dioxolene and Sq2 represents the dioxolene on the other side of pyrene.
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3. Additional Figures

Figure S1. IR spectra of 3-5.

Figure S2. Solid-state UV-Vis diffuse reflectance spectra of 3-5.
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Figure S3. Corresponding orbitals for Compound 3 in electronic absorption spectroscopy, as calculated by the 

TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. The top one at 

594 nm corresponds to a MLCT transition from CoII-HS to the π* orbital of the semiquinone. The bottom one at 

813 nm can be assigned to a LMCT transition. Note that the calculation was conducted for the {CoIII-LS–pyreneCat-

Sq–CoII-HS}2+ electronic state.
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Figure S4. Corresponding orbitals for Compound 4 in electronic absorption spectroscopy, as calculated by the 

TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm 

transition corresponds to internal semiquinone ligand transitions within the pyreneSq-Sq ligand; (b) 646 nm 

transition can be assigned to a MLCT transitions from CoII-HS to the π* orbital of semiquinone; (c) 594 nm and 

(d) 700 nm transitions can be assigned to MLCT transitions from CoII-HS to the π* orbital of MeTPA. Note that 

the calculation was conducted for the {CoII-HS–pyreneSq-Sq–CoII-HS}2+ electronic state.



S15

Figure S5. Corresponding orbitals for Compound 5 in electronic absorption spectroscopy, as calculated by the 

TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm and 

(b) 556 nm transitions correspond to internal semiquinone ligand transitions within the pyreneSq-Sq ligand; (c) 556 

nm, (d) 643 nm, and (e) 691 nm transitions can be assigned to MLCT transitions from CoII-HS to the π* orbital of 

semiquinone. Note that the calculation was conducted for the {CoII-HS–pyreneSq-Sq–CoII-HS}2+ electronic state.
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Figure S6. Perspective view of the dinuclear cations of 4 (a) and 5 (b) with 50% thermal ellipsoids. Hydrogen 

atoms, solvent molecules, and counter-ions are omitted for clarity. Symmetry codes: a) 1 – x, 1 – y, 2 – z; b) – x, 

2 – y, 2 – z.

Figure S7. The packing diagram of 3. Hydrogen atoms, anions, and guest solvent molecules are omitted for 
clarity.

(a)

(b)
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Figure S8. The packing diagrams of 4. color code: Co, purple; O, red; N, blue; C, grey.

Figure S9. The packing diagrams of 5. color code: Co, purple; O, red; N, blue; C, grey.
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Figure S10. Thermogravimetric analysis of 3 -5.

Figure S11.  versus T plot for compound 3 in the range of 300-2-390-2 K. Applied field: 5000 Oe.χMT
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Figure S12.  versus H plots at 2 K, 5 K and 7 K for 4.M
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Figure S13.  versus H plots at 2 K, 5 K and 7 K for 5.M
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Figure S14. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe. Solid black lines 
represent the fitting results by the PHI program neglecting intermolecular magnetic interactions based on equation 
1. Inset: the magnetic coupling parameters of 4 and 5. Large inconsistency in J coupling value was observed 
between 4 and 5 using this fitting model. 

Figure S15. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe. Solid black lines 
represent the fitting results by the PHI program based on equation 1 including long-distance coupling constants 
J2 and J3 during data fitting. Inset: the magnetic coupling parameters of 4 and 5. A very large D value (59.7 
cm-1) was used during data fit for compound 4, which is unlikely. 
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Figure S16. Optimized geometries of the compound 3 in the three charge distributions, as calculated by the DFT 

UTPSSh/6-311++G(d,p) method. Here and in Figures S17 – S20hydrogen atoms are omitted for clarity.
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Figure S17. Optimized geometries of the compound 4 in the three charge distributions, as calculated by the DFT 

UTPSSh/6-311++G(d,p) method. 
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Figure S18. Corresponding orbitals for 4 (a) and 5 (b) visualizing the CoII-HS-Sq1 exchange interactions, as 

calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = 0.03 e Å–3).

(a)

(b)
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Figure S19. Corresponding orbitals for Zn-SQ-SQ-Zn analogs of 4 and 5 visualizing the CoII-HS-Sq1 exchange 

interactions, as calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = 0.03 e Å–3).
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Figure S20. Optimized geometries of the compound 5 in the three charge distributions, as calculated by the DFT 

UTPSSh/6-311++G(d,p) method. 


