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1. Additional Tables

Table S1. Frequencies (in cm) of stretching vibrations, according to the DFT UTPSSh/6-311++G(d,p)

calculations.

Complex C=0 ([Co(CO)])  C-N (Meipa) (sgmi?]{l(i:no(r)le) (catef:hglate)
3, {CoMLS—pyreneCat-Sa—Coll-HS} 2+ 2114 1660 1500 1448
2107 1659
2033 1632
2029 1631
1990
1986
1977
1974
4, {Co"MS_pyreneSaSe-Coll-HS} 2+ 2109 1661 1496 -
2029 1660
1985 1633
1977
5, {Co"S—pyreneSa-Sa-Coll-HS} 2+ 2109 1661 1497 -
2030 1659
1986 1634
1978
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Table S2. Crystal data and structural refinements for 3.

3
T/K 100 298 360
Formula Cs2H74Co4NgO 15 CesHssCosN5O 12 CesHssCosN5O 12
M,/ g mol™! 1599.21 1414.94 1414.94
Crystal system Monoclinic
Space group P2/c
alA 8.7470(5) 8.8691(8) 8.9372(4)
b/ A 17.2680(7) 17.7249(14) 17.7258(8)
c/A 24.2915(1) 24.8969(18) 24.7614(10)
al® 90 90 90
ple 92.161(4) 91.742(8) 92.352(4)
y/° 90 90 90
VA3 3666.5(3) 3912.1(5) 3919.4(3)
Z 2
Pealc/ g cm3 1.449 1.201 1.199
&/ mm™! 0.959 0.890 0.888
F(000) 1652.0 1452.0 1452.0
Rt/ % 7.34 7.15 3.86
R, [I220(])] 0.0732 0.0760 0.0738
WR,; (all data) 0.1936 0.2270 0.2432
CCDC no. 2224738 2224741 2224744
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Table S3. Selected bond lengths and angles for 3.

3
T/K 100 298 360
Col-01/A 1.868(2) 1.896(3) 1.976(3)
Col-02/A 1.879(3) 1.930(3) 1.933(3)
Col-N1/A 1.965(3) 2.008(3) 2.061(4)
Col-N2/A 1.925(3) 1.968(3) 2.008(4)
Col-N3/A 1.920(3) 1.971(3) 2.016(4)
Col-N4/A 1.922(3) 1.968(3) 1.997(4)
01-C1/A 1.358(4) 1.342(4) 1.301(6)
02-C2/A 1.352(4) 1.330(4) 1.327(5)
C1-C2/A 1.380(5) 1.402(5) 1.400(6)
C1-C5/A 1.430(5) 1.428(5) 1.450(6)
C2-C3/A 1.438(5) 1.432(5) 1.414(6)
C3-C4/A 1.426(5) 1.410(5) 1.421(5)
C4-C4/A 1.427(5) 1.428(4) 1.441(6)
C4-C5/A 1.423(4) 1.421(4) 1.420(6)
N2-Col-N1 85.62(1) 83.58(1) 82.16(2)
N2-Col-N3 170.0(7) 166.5(1) 163.4(1)
N3-Col-N1 84.73(1) 83.06(1) 81.67(1)
N4-Col-N1 86.12(1) 84.01(1) 83.08(1)
N4-Col-N2 92.19(1) 91.66(1) 88.88(1)
N4-Col-N3 89.89(1) 89.12(1) 92.68(1)
01-Col-N1 178.6(1) 178.6(1) 179.1(1)
01-Col-N2 95.00(1) 97.05(1) 87.88(2)
O1-Col-N3 94.71(1) 96.33(1) 98.54(1)
O1-Col-N4 92.57 (1) 94.78(1) 96.10(1)
02-Col-N1 91.78(1) 94.50(1) 96.17(1)
02-Col-N2 89.38(1) 90.39(1) 87.82(1)
02-Col-N3 88.19(1) 88.47(1) 90.39(1)
02-Col-N4 177.28(1) 177.3(1) 176.6(1)
02-Col-01 89.50(1) 86.69(1) 84.62(1)
Y / deg® 32.81 49.76 63.32
© / deg® 88.85 135.9 175.6
Diox MOS® -1.8 -1.6 -1.4

aThe sum of the deviation of 12 unique cis ligand-metal-ligand angles from 90°. *The sum of the deviation of 24 unique
torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold
axis from 60°. CEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting
of C—C and C-O bond lengths to assign an apparent oxidation state: —1 for a semiquinonate ligand and —2 for a catecholate

ligand.
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Table S4. Bond valence sum (BVS)? calculation for Co atoms in 3.

T/K 100 360
Atom Col Col
BVS 3.1 2.5
Table SS. Crystal data and structural refinements for 4 and 5.
4 5
T/K 100 100
Formula C70HgCosNgO1» C74HegC04CIlgNgO 1,
M,/ g mol™! 1442.99 1709.78
Crystal system Monoclinic Triclinic
Space group P2/c pl
alA 14.477(2) 11.8002(5)
blA 15.1685(7) 12.6052(7)
c/A 24.167(3) 16.1129(8)
al® 90 103.951(4)
ple 135.18(3) 97.024(4)
y/° 90 106.222(4)
VA3 3740.7(14) 2186.65(19)
V4 2 1
Peale/ g 3 1.281 1.298
u/ mm™! 0.932 0.985
F(000) 1484.0 874.0
Rint ! % 5.88 6.80
Ry [1220(])] 0.1286 0.0774
WR; (all data) 0.3994 0.2308
CCDC no. 2287990 2158906
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Table S6. Selected bond lengths and angles for 4 and 5.

4 5

T/K 100 100
Col-01/A 2.006(6) 2.015(3)
Col-02/A 2.076(8) 2.129(2)
Col-N1/A 2.130(7) 2.160(4)
Col-N2/A 2.150(3) 2.151(4)
Col-N3/A 2.146(4) 2.186(3)
Col-N4 /A 2.074(6) 2.186(3)
01-C1/A 1.274(9) 1.291(4)
02-C2/A 1.290(7) 1.272(4)
C1-C2/A 1.454(8) 1.448(5)
Cl1-C5/A 1.454(8) 1.449(5)
C2-C3/A 1.435(1) 1.461(5)
C3-C4/A 1.421(8) 1.416(5)
C4-C4 /A 1.423(1) 1.449(5)
C4-C5/A 1.41(1) 1.416(5)
N2-Col-N1 78.64(2) 77.08(1)
N2-Col-N3 155.4(1) 155.1(1)
N3-Col-N1 77.17(2) 79.47(1)
N4-Col-N1 82.13(2) 80.81(1)
N4-Co1-N2 85.36(1) 99.42(1)
N4-Col1-N3 95.75(2) 84.96(1)
01-Col-N1 175.4(2) 174.1(1)
01-Col-N2 105.6(1) 105.3(1)
01-Col-N3 98.70(2) 97.23(1)
01-Col-N4 96.28(2) 103.9 (1)
02-Col-N1 101.1(2) 94.88(1)
02-Col1-N2 89.42(1) 87.36(1)
02-Col-N3 90.80(2) 86.34(1)
02-Col-N4 173.2(1) 171.8(1)
02-Col-01 80.97(17) 79.97(1)

T / deg® 94.58 104.8

0/ deg® 285.5 267.1

Diox MOS¢ -1.05 -0.96

aThe sum of the deviation of 12 unique cis ligand-metal-ligand angles from 90°. *The sum of the deviation of 24 unique
torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold
axis from 60°. CEmpirical metrical oxidation state of tetraoxolene ligands, proposed by Brown et al. uses a least-squares fitting
of C—C and C-O bond lengths to assign an apparent oxidation state: —1 for a semiquinonate ligand and —2 for a catecholate

ligand.
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Table S7. Bond valence sum (BVS)? calculation for Co atoms in 4 and 5.

4 5

T/K 100 100
Atom Col Col
BVS 1.9 1.7

Table S8. Parameters of intermolecular interactions for 3.

3
T/K 100 298 360
lengths /A angles/deg. lengths /A  angles/deg. lengths/A  angles/deg.
non/ A 3.867 - 3.944 - 4.008 -
C-H-m/A 3.554 156.7 3.735 151.7 3.785 151.9

Table S9. Parameters Obtained from PHI Fitting for compounds 4 and S using two other fitting models.

PHI fitting PHI fitting
4 5 4 5
9co 2.10 2.00 2.04 2.00
p(Eem ) 45.0 28.6 59.7 24.0
Jem™y 32.8 150 121.2 137.7
Jiem™Y 51.4 43.6 63.2 56.7
P (cm_ 1) — - -4.6 -3.5
J3em™Y - = 0.8 0.0
z]' (em 1) - - - -
TIP (cm® mol ™" 3.6 x 107 5.7 x 10 ~

Table S10. Spin states (S), total energies without (E) and with (E#’F) zero-point harmonic vibrations, total

enthalpies (H*%) and expectation values of the spin-squared operator (S?) of the compounds 3 -5 calculated by the
DFT UTPSSh/6-311++G(d,p) method.

Charge Distribution S E au EZPE_a . H?8 au. 2
Compound 3

{1s-Co(tpa)—pyreneCa-Cal_]s-Coll(tpa)} 0 -9499.602610 -9498.462301 -9498.380696 0.000
{1s-Co"(tpa)—pyrencC-Sa_hs-Coll(tpa)} 2 -9499.508192  -9498.461007  -9498.376493  6.016
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Bo @ 1 -9499.596922
{hs-Co''(tpa)—pyrene3d-Si-hs-Co'l(tpa)} 4 -9499.590856
aPBo 2 9499587535
aofp 0 -9499.589450
aPap 0 -9499.586315
afoa 3 -9499.587840
Boowo 1 -9499.589286
Compound 4

{1s-Co''(Metpa)—pyreneCat-Ca_]s-Coll(Metpa) } 0 -9578.256293
{1s-Co™(Metpa)—pyrenet2-Sa—hs-Co''(Metpa) } 2 -9578.257212
i 1 -9578.255285
{hs-Co(Metpa)—pyreneS4-Si—hs-Co''(Metpa)} 4 -9578.255743
appBo 2 -9578.250746
aafp 0 -9578.253419
aBop 0 -9578.249333
apoo 3 -9578.251560
Boowo 1 -9578.252957
Compound 5

{1s-Co™(Mestpa)—pyrene©®-Cai—]s-Co(Me,tpa) } 0 -9656.900813
{1s-Co'"(Mestpa)—pyrene©-S4—hs-Co(Me,tpa)} 2 -9656.909564
Ba 1 -9656.907611
{hs-Co"(Me,tpa)—pyreneSd-Si-hs-Co''(Me,tpa)} 4 -9656.915134
apBa 2 -9656.911122
acpp 0 -9656.913667
apap 0 -9656.908457
afoo 3 -9656.911670
Boowo 1 -9656.913139

-9498.457531

-9577.060359
-9577.064794

-9577.066804

-9655.649592
-9655.661944
-9655.671404

-9498.373622

-9576.974602
-9576.976897

-9576.977053

-9655.561084
-9655.572274
-9655.579476

2.988
20.032
7.984
4.004
3.949
12.975
5.009

0.000
6.016
3.005
20.031
8.013
4.003
3.974
12.991
5.023

0.000
6.016
3.010
20.031
8.019
4.002
3.837
12.992
5.024

“ ¢, corresponds to spin-up, p corresponds to spin-down; the order of the paramagnetic centers in {Co"™-pyreneSe
Sa-Co''} charge distributions: (1) hs-Co™ (2) Sq (3) Sq (4) hs-Co"

Table S11. Relative energies without (AE) and with (E#PE) zero-point harmonic vibrations, relative enthalpies

(AH?%) (all values are given in kcal mol") of charge distributions of the compounds 3-5 calculated by the DFT

UTPSSh/6-311++G(d,p) method.

Charge Distribution AE EZPE H?3
3 {Is-Co"l(tpa)—pyreneCat-Cas-Coll(tpa)} 0.0 0.0 0.0
{1s-Co"(tpa)—pyreneC2-Sd—hs-Co'(tpa)} 2.8 0.8 2.6
{hs-Co'l(tpa)—pyreneSdSi-hs-Col(tpa)} 7.4 3.0 44
4 {1s-Co'(Metpa)—pyreneCat-Ca]s-Colll(Metpa)} 0.6 4.0 1.5
{ls-Co™(Metpa)—pyrene®2-Sa—hs-Co''(Metpa)} 0.0 1.3 0.1
{hs-Co"(Metpa)—pyreneSd-Si-hs-Co'l(Metpa)} 0.9 0.0 0.0
5 {Is-Co"(Me,tpa)—pyreneCa-Cat_]s-Co'(Me,tpa)} 9.0 13.7 11.5
{1s-CoM(Me,tpa)—pyrene®-Si-hs-Co'(Me,tpa)} 3.5 5.9 4.5
{hs-Co"'(Me,tpa)-pyreneStSi-hs-Co'(Me,tpa)} 0.0 0.0 0.0
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Table S12. Exchange coupling parameters (J, given in cm™') in the compounds 3-5 calculated by the DFT
UTPSSh/6-311++G(d,p) method.

Charge Distribution J (hs-Co-Sq1)*  J(hs-Co-Sq2)  J(Sql-Sq2) J (hs-Co'-hs-Coll)
Compound 3

{1s-Co"(tpa)—pyreneCa-Sd-hs-Co'l(tpa)} 92 - - -
{hs-Co'l(tpa)—pyreneSd-Si-hs-Co'l(tpa)} 59 2 147 -1

Compound 4

{ls-Co"(Metpa)—pyrenet2-Sa—hs-Co''(Metpa)} 140 - - -
{hs-Co"'(Metpa)—pyreneSd-Si-hs-Co''(Metpa)} 33 8 173 3

Compound 5

{Is-CoM(Me,tpa)—pyrene®®-Si-hs-Co'(Me,tpa)} 143 - - -
{hs-Co''(Me,tpa)-pyreneSeSd-hs-Co''(Mestpa)} 83 -11 181 4

@ Sq1 represents the closest (coordinating) dioxolene and Sq2 represents the dioxolene on the other side of pyrene.
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3. Additional Figures
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Figure S1. IR spectra of 3-5.
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Figure S2. Solid-state UV-Vis diffuse reflectance spectra of 3-5.
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Figure S3. Corresponding orbitals for Compound 3 in electronic absorption spectroscopy, as calculated by the

(Ej\f/i‘\f (LM»(;L ‘ "y

TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. The top one at
594 nm corresponds to a MLCT transition from Co™S to the n* orbital of the semiquinone. The bottom one at
813 nm can be assigned to a LMCT transition. Note that the calculation was conducted for the {Co"S—pyrene®2

Sa_Co!l-HS1 2+ electronic state.
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Figure S4. Corresponding orbitals for Compound 4 in electronic absorption spectroscopy, as calculated by the
TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm
transition corresponds to internal semiquinone ligand transitions within the pyreneSeSd ligand; (b) 646 nm
transition can be assigned to a MLCT transitions from Co'™S to the n* orbital of semiquinone; (¢) 594 nm and
(d) 700 nm transitions can be assigned to MLCT transitions from Co™S to the n* orbital of MeTPA. Note that

the calculation was conducted for the {Co"HS—pyreneSa-Sa—Coll-HS12* electronic state.
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Figure SS. Corresponding orbitals for Compound 5 in electronic absorption spectroscopy, as calculated by the

TD-DFT method at UTPSSh/def2-SVP level of theory with CPCM (acetonitrile) solvent model. (a) 496 nm and
(b) 556 nm transitions correspond to internal semiquinone ligand transitions within the pyreneSe-3d ligand; (c) 556
nm, (d) 643 nm, and (¢) 691 nm transitions can be assigned to MLCT transitions from Co™ to the n* orbital of

semiquinone. Note that the calculation was conducted for the {Co™MS—pyreneSa-Sa—Col-H812* electronic state.
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Figure S6. Perspective view of the dinuclear cations of 4 (a) and 5 (b) with 50% thermal ellipsoids. Hydrogen
atoms, solvent molecules, and counter-ions are omitted for clarity. Symmetry codes: a) 1 —x, 1 —y, 2 — z; b) — x,

2-y,2—2z.

Figure S7. The packing diagram of 3. Hydrogen atoms, anions, and guest solvent molecules are omitted for

clarity.
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Figure S9. The packing diagrams of 5. color code: Co, purple; O, red; N, blue; C, grey.
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Figure SII.XMTversus T plot for compound 3 in the range of 300-2-390-2 K. Applied field: 5000 Oe.
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Figure S14. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe. Solid black lines
represent the fitting results by the PHI program neglecting intermolecular magnetic interactions based on equation
1. Inset: the magnetic coupling parameters of 4 and 5. Large inconsistency in J coupling value was observed

between 4 and 5 using this fitting model.
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Figure S15. Magnetic susceptibilities of compounds 4 and 5 under applied field of 5000 Oe. Solid black lines
represent the fitting results by the PHI program based on equation 1 including long-distance coupling constants
J> and J; during data fitting. Inset: the magnetic coupling parameters of 4 and 5. A very large D value (59.7

cm) was used during data fit for compound 4, which is unlikely.
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{hs-Co'(tpa)-pyrene®*-hs-Co'(tpa)}

Figure S16. Optimized geometries of the compound 3 in the three charge distributions, as calculated by the DFT

UTPSSh/6-311++G(d,p) method. Here and in Figures S17 — S20hydrogen atoms are omitted for clarity.
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{hs-Co"(Metpa)—pyrene®**'-hs-Co'(Metpa)}

Figure S17. Optimized geometries of the compound 4 in the three charge distributions, as calculated by the DFT

UTPSSh/6-311++G(d,p) method.
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Figure S18. Corresponding orbitals for 4 (a) and 5 (b) visualizing the Co™5-Sql exchange interactions, as

calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = 0.03 ¢ A-3).
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Figure S19. Corresponding orbitals for Zn-SQ-SQ-Zn analogs of 4 and 5 visualizing the Co™5-Sql exchange

interactions, as calculated by the DFT UTPSSh/6-311++G(d,p) method (contour value = 0.03 e A-3).
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{hs-Co"(Me,tpa)-pyrene**-hs-Co'"(Me,tpa)}

Figure S20. Optimized geometries of the compound 5 in the three charge distributions, as calculated by the DFT

UTPSSh/6-311++G(d,p) method.
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