Electronic Supplementary Information

Luminescence Detection of CH_2Cl_2 via Varying Cu···Cu Interaction in a Flexible Porous Coordination Polymer

Wei-Jie Zhang#,^a Wan-Tao Chen#,^a Chen-Hui Li,^a Wen-Zhu Sun,^a Jia-Wen Ye^{*},^a Ling Chen^{*},^a Hai-Ping

Wang*,^a Xiao-Ming Chen.^b

^aSchool of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529000, PR China.

^bMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University,

Guangzhou 510275, PR China.

#These authors contributed equally.

EXPERIMENTAL DETAILS

General Methods

DFT calculations. The binding energy was calculated by Dmol3 module of Materials Studio 8.0 software package. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange–correlation functional with the double numeric plus (DNP) polarization basis set was utilized.¹ The effective core potentials were used. Grimme semiempirical methods to describe the long-range van der Waals interactions. The DFT-D are employed to the dispersion correction.² The convergence tolerance was as follows: 10^{-5} Ha (Energy), 0.002 Ha/Å (Max. force) and 0.005 Å (Max. displacement). The binding energy (ΔE) was computed by the following equation: $\Delta E = E$ (**CP**, without guest) + *E* (guest) – *E* (**CP**, with guest). The calculation results are shown in Table S2.

Fig. S1. The Cu…Cu distances in **CIPP** at room temperature. Color code: Cu, orange; I, purple; N, indigo; P, pink; C, gray; H, light purple.

Fig. S2. The 1D chains in CIPP that are stacked by C–H···π interactions. Color codes: Cu, orange; I, purple; N, indigo;
P, pink; C, gray; H, light purple. Green dotted line, C–H···π. a, 3.04 Å; b, 3.31 Å; c, 3.50 Å; d, 3.45 Å.

Fig. S3. The TG curve of CIPP.

Fig. S4. CIE coordinates of CIPP, CIPP-D, CIPP-C and CIPP-A, respectively.

Fig. S5. The excitation-emission maps of (a) CIPP and (b) CIPP-D.

Fig. S6. The Cu-Cu distances in **CIPP** at 150 K. Color codes: Cu, orange; I, purple; N, indigo; P, pink; C, gray; H, light purple.

Fig. S7. The emission spectra of CIPP after exposure in different halohydrocarbon vapor, excited at 365 nm. The λ_{em} locates at 622, 638 and 640 nm after exposure in CH₂Br₂, CH₂I₂, CHBr₃, respectively.

Fig. S8. The decay curves of CIPP before and after exposure in different vapors, excited by 375-nm VPL and detected

at $\lambda_{\rm em}$.

Fig. S9. The asymmetric units of (a) **CIPP-D**, (b) **CIPP-C** and (c) **CIPP-A**, respectively. Color codes: Cu, orange; I, purple; Cl, green; N, indigo; P, pink; C, gray; H, light purple.

Fig. S10. PXRD patterns of the as-synthesized **CIPP-D** and **CIPP** was exposed in saturated CH₂Cl₂ vapor for 3 hours, respectively.

Fig. S11. Emission spectra of the as-synthesized CIPP-D and CIPP powder after exposure in CH₂Cl₂ vapor, excited at

365 nm.

Fig. S12. PXRD patterns of CIPP before and after immersing in CH_2CI_2 solvent.

Fig. S13. PXRD patterns of CIPP before and after exposure in $CHCl_3$ saturated vapor for 3 h.

Fig. S14. PXRD patterns of the as-synthesized CIPP-A and CIPP after exposure in saturated CH₃CN vapor for 3 hours,

respectively.

Fig. S15. The stacking mode of chains in **CIPP-D** along the *a*-axis. Color codes: Cu, orange; I, purple; Cl, green; N, indigo; P, pink; C, gray; H, light purple.

Fig. S16. The chain stacking by C–H···π interaction between triphenylphosphine ligands in **CIPP-D**. a, 3.21 Å; b, 3.20 Å; c, 3.38 Å; d, 3.49 Å; e, 3.20 Å; f, 3.21 Å.

Fig.S17. The guests that located in the cavities of (a) **CIPP-D**, (b) **CIPP-C**, and (c) **CIPP-A**, respectively. Color codes: Cu, orange; I, purple; Cl, green; N, indigo; P, pink; C, gray; H, light purple.

Fig. S18. Intramolecular interactions between guest molecules with the frameworks of (a) **CIPP-D**, (b) **CIPP-C** and (c) **CIPP-A**, respectively. The corresponding distances of interactions are shown in Table S3. Purple dotted line, $CI/N\cdots$ H; green dotted line, $CI\cdots\pi$; grey dotted line, $C-H\cdots\pi$; pink dotted line, $I\cdots$ H.

Fig. S19. Hirshfeld surfaces of (a) CH₂Cl₂ in **CIPP-D**, (b) CHCl₃ in **CIPP-C**, (c) CH₃CN in **CIPP-A**. The 2D fingerprint plots of Hirshfeld surfaces for (d) CH₂Cl₂, (e) CHCl₃ and (f) CH₃CN.

Fig. S20. The occupied areas of adjacent chains in (a) CIPP-D, (b) CIPP-D, (c) CIPP-A, (d) CIPP-C, respectively.

Fig. S21. Emission wavelengths, Cu…Cu distances and PLQYs of CIPP, CIPP-D, CIPP-C and CIPP-A, respectively.

Fig. S22. PXRD patterns of the as-synthesized **CIPP** at room temperature (RT), **CIPP** that was heated at 318 K and then cooled to the room temperature, and after 16 heating/cooling cycles, respectively.

Fig. S23. Emission spectra of the as-synthesized **CIPP** and **CIPP** that was heated at 318 K and then cooled to the room temperature, respectively, excited at 365 nm.

Fig. S24. Time-dependent emission spectra of spontaneous desorption of CIPP-D measured with a CCD detector, excited at 365 nm.

Fig. S25. Time-dependent emission spectra of CIPP in $CHCl_3$ saturated vapor, measured with a CCD detector, excited at 365 nm. Insert: Time-dependent blue shift of λ_{em} .

Fig. S26. Time-dependent emission spectra of CIPP in CH₃CN saturated vapor, measured with a CCD detector, excited at 365 nm. Insert: Time-dependent blue shift of λ_{em} .

Compounds	СІРР	CIPP-150K	CIPP-D	CIPP-C	CIPP-A
Formula	$C_{60}H_{51}Cu_{3}I_{3}N_{3}P_{3}$	$C_{60}H_{51}Cu_{3}I_{3}N_{3}P_{3}$	C ₂₁ H ₁₉ Cl ₂ CuINP	C ₂₁ H ₁₈ Cl ₃ CuINP	$C_{22}H_{20}CuIN_2P$
Formula weight	1478.27	1478.27	577.68	612.12	533.81
<i>Т</i> (К)	299.0(6)	150.00(10)	299.01(19)	298.83(10)	149.99(10)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	12/a	P2 ₁ /n	<i>P</i> -1	P21/n
<i>a</i> (Å)	29.6215(17)	28.0131(14)	8.9147(2)	8.82120(10)	8.9442(3)
b (Å)	16.6994(4)	16.5872(6)	18.4311(4)	12.1444(2)	18.0966(5)
c (Å)	28.2794(18)	27.2755(13)	13.5398(4)	12.2371(2)	13.1452(4)
α(°)	90	90	90	74.734(2)	90
β(°)	123.011(8)	115.762(6)	93.423(2)	69.225(2)	93.281(3)
γ (°)	90	90	90	83.1210(10)	90
V (Å ³)	11730.5(14)	11414.1(10)	2220.72(10)	1181.95(4)	2124.19(11)
Ζ	8	8	4	2	4
R _{int}	0.0528	0.0456	0.0457	0.0389	0.0538
${}^{a}R_{1}[l \geq 2\sigma(l)]$	0.0492	0.0634	0.0385	0.0312	0.0370
^b wR ₂	0.1534	0.1954	0.1009	0.0840	0.0943
GOF	1.052	1.136	1.048	1.074	0.998
$^{a}R_{1} = \Sigma F_{o} - F_{c} $	/ Σ F _o .				
^b wR ₂	=	$[\Sigma w(F_o^2)]$		_	$F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}$

 Table S1. Crystallographic data and structure refinement parameters.

E (CIPP-D) / kJ mol ⁻¹	$E \left(\text{CIPP-D} - \text{CH}_2 \text{Cl}_2 \right) / \text{kJ mol}^{-1}$	E (CH ₂ Cl ₂) / kJ mol ⁻¹	ΔE / kJ mol $^{-1}$
-5992987.04	-3531718.70	-2461183.30	85.04
<i>Е</i> (СІРР-С) / kJ mol ⁻¹	<i>E</i> (CIPP-C – CHCl ₃) / kJ mol ⁻¹	E (CHCl₃) / kJ mol⁻¹	$\Delta E / kJ mol^{-1}$
-7171664.96	-3531706.26	-3639862.70	96.00
<i>E</i> (CIPP-A) / kJ mol ⁻¹	<i>Е</i> (СІРР-А – СН ₃ СN) / kJ mol ^{–1}	<i>E</i> (CH ₃ CN) / kJ mol ⁻¹	$\Delta E / kJ mol^{-1}$
-3872084.45	-3531725.88	-340272.90	85.67

 Table S2. The binding energy of host-guest interaction.

 Table S3. The host-guest interaction distances.

Compounds	CI/N···H	С–Н…π	Cl····π	I···H
	Cl1…H / Å			
	3.077			
	3.153			
	3.238	3.563		
	3.257	3.982		
CIPP-D	3.334	4.121	-	-
	Cl2…H / Å	4.172		
	3.315			
	3.333			
	3.354			
	Cl1…H / Å			
	3.408			
	3.464			
	3.495			
	Cl2…H / Å			
	3.307			
CIPP-C	3.151	-	3.414	3.108
	Cl3…H / Å			
	3.094			
	3.124			
	3.283			
	3.287			
	3.536			
	N1…H / Å			
	2.725			
	2.935	3.585 3.569 3.755		
	3.025			
CIPP-A	3.041		-	-
	3.062			
	3.068			
	3.377			

References

- 1 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 2 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, *J. Comput. Chem.*, 2006, **27**, 1787-1799.