Supporting Information

Open-framework aluminum hexacyanoferrate as cathode materials for high voltage aqueous zinc-ion batteries: Effect of Al³⁺ cation on three-phase transition of AlFe(CN)₆

Yulin Kong^a, Yawei Xiao^a, Liang Chen^b, Shuotao Zhang^b, Zhaoping Liu^{b*}, Yude Wang^{a,c*}

- ^a National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 6500504, China.
- ^b Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
- ^c Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 6500504, China.

*E-mail addresses: liuzp@nimte.ac.cn (Z. P. Liu), ydwang@ynu.edu.cn (Y. D. Wang)

Fig. S1 Graphene sheet obtained through thermal exfoliation of graphene oxide.

Fig. S2 The digital photo of AlHCF (blue) and AlHCF/Gr (black).

Fig. S3 Raman spectra of AlHCF and AlHCF/Gr.

Fig. S4 HRTEM images of a-b) AlHCF and c-d) AlHCF/Gr.

Fig. S5 The selected area electron diffraction (SAED) patterns of AlHCF. The diffraction ring of AlHCF confirms its po lycrystalline characteristics.

Fig. S6 a-e) Galvanostatic charge/discharge (GCD) profiles at maximum capacity for different ingredient proportion of AlHCF, x:y represents the ingredient proportion of Al^{3+} : Fe(CN)₆⁴⁻.

Fig. S7 Voltage difference between the charge and discharge plateaus of cycle 10 and cycle 50.

Fig. S8 GCD profiles of long-term cycle.

Fig. S9 Electrochemical impedance spectroscopy (EIS) of AlHCF and AlHCF/Gr.

Fig. S10 Electrochemical performance of full cell at 5C (1C=60 mA g-1). a) Cycling performance of full cell using AlHCF/Gr as cathode. b) GCD profiles of full cell.

Fig. S11 Electrode kinetics analysis of AlHCF/Gr electrode with cycling. a) Cyclic voltammograms of AlHCF at various scan rates. b) log(i) - log(v) plots of anodic and cathodic peaks derived from the scan rate dependent CV curves.

Fig. S12 SEM images of AlHCF/Gr a) before and b) after 200 cycles.

Space group	Fmm
a	9.97882 Å
b	9.97882 Å
с	9.97882 Å
α	90°
β	90°
γ	90°
Cell volume	993.65970 Å ³
R_{wp}	7.46%
R _p	5.54%

 Table S1 Structural parameters of AlHCF after Rietveld refinement.

Atom	Wyckoff position	Х	У	Z	Occupancy
Al	4b	0.5000	0.0000	0.0000	1
Fe	4a	0.0000	0.0000	0.0000	1
С	24e	0.2033	0.0000	0.0000	1
Ν	24e	0.3086	0.0000	0.0000	1
K	8c	0.2500	0.2500	0.2500	0.0304

 Table S2 Fractional coordinates of AlHCF after Rietveld refinement.

						Unit: wt%
Sample		ICP-AES		E	A	TGA
AILICE	К	Al	Fe	С	Ν	H ₂ O
AIRCF	1.41	13.79	10.18	24.27	23.41	23.0

 Table S3 Element content of AlHCF.

mass of active electrode materials.				
Anode/Cathode	Average operating	Energy density	Reference	
	voltage / V	/ Wh kg ⁻¹		
Zn/ZnHCF	1.7	100	1	
Zn/ZnHCF	1.73	104	2	
Zn/KMnHCF	1.74	150	3	
Zn/KNiHCF	1.19	67	4	
Zn/NiHCF	1.2	60	5	
Zn/KMnHCF	1.4	99	6	
Zn/CuHCF	1.73	93	7	
Zn/CuZnHCF	1.73	62	8	
Zn/FeHCF	1.2	72	9	
Zn/NaFeHCF	1.1	81	10	
Zn/FeHCF	1.1	50	11	
Zn/AlHCF	1.8	125	This work	

Table S4 Comparison of energy densities & average operating voltage of zinc-ion batteriesusing different PBAs materials as cathode. Energy density is calculated based on the total

Ion	$I_{\rm A}({ m eV})$	X _A	Radius (Å)
Fe ²⁺	30.6	23.4	0.61
Ni ²⁺	35.2	26.7	0.69
Cu^{2+}	36.8	28.6	0.73
Zn^{2+}	39.7	28.8	0.74
Mn^{2+}	33.7	24.4	0.67
Co ³⁺	51.3	_	0.65
Al ³⁺	120.0	74.2	0.54

 Table S5 Ionization Potential, Electronegativity and Radius for some ions.¹²

*I*_A: Ionization Potential, X_A: Electronegativity.

	0 1	-)	
Sample	Bond	Bond distance (Å)	Reference
NILCE	Ni-N	2.043	
N1HCF -	Fe-C	1.761	13
(Fm-3m)	C≡N	1.150	
	Zn-N1	1.998	
	Zn-N2	1.971	
ZnHCF	Fe-C1	1.907	14
(R-3c)	Fe-C2	1.907	14
	C1≡N1	1.161	
	C2≡N2	1.154	
CHICE	Cu-N	2.069	
(Em 2m)	Fe-C	1.866	15
(Fm-3m) -	C≡N	1.180	
	Mn-N	2.183	
MnHCF -	Fe-C	1.863	16
(Fm-3m)	C≡N	1.140	
CallCE	Co-N	1.976	
(Em 2m)	Fe-C	1.882	17
(FIII-3M)	C≡N	1.180	
AlHCF	Al-N	1.909	This work

Table S6 Refinement data for various MeHCFs. ZnHCF is a rhombohedral structure (space

group R-3c).

(Fm-3m)	Fe-C	2.029	
	C≡N	1.051	

Reference

- L. Zhang, L. Chen, X. Zhou and Z. Liu, Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System, *Advanced Energy Materials*, 2015, 5, 1400930.
- L. Zhang, L. Chen, X. Zhou and Z. Liu, Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery, *Scientific Reports*, 2015, 5, 18263.
- D. Wenjun, Z. Li, Y. Ye, Z. Zhou, Y. Li, M. Zhang, X. Yuan, J. Hu, W. Zhao, Z. Huang,
 C. Li, H. Chen, J. Zheng and R. Li, Zn²⁺ Induced Phase Transformation of K2mnfe(Cn)6 Boosts Highly Stable Zinc Ion Storage, *Advanced Energy Materials*, 2021.
- M. S. Chae, J. W. Heo, H. H. Kwak, H. Lee and S.-T. Hong, Organic Electrolyte-Based Rechargeable Zinc-Ion Batteries Using Potassium Nickel Hexacyanoferrate as a Cathode Material, *Journal of Power Sources*, 2017, 337, 204-211.
- A. L. Lipson, S.-D. Han, S. Kim, B. Pan, N. Sa, C. Liao, T. T. Fister, A. K. Burrell, J. T. Vaughey and B. J. Ingram, Nickel Hexacyanoferrate, a Versatile Intercalation Host for Divalent Ions from Nonaqueous Electrolytes, *Journal of Power Sources*, 2016, 325, 646-652.
- T. Cao, F. Zhang, M. J. Chen, T. Shao, Z. Li, Q. J. Xu, D. H. Cheng, H. M. Liu and Y. Y. Xia, Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries, *Acs Applied Materials & Interfaces*, 2021, 13, 26924-26935.
- R. Trócoli and F. La Mantia, An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate, *ChemSusChem*, 2015, 8, 481-485.
- G. Kasiri, J. Glenneberg, A. Bani Hashemi, R. Kun and F. La Mantia, Mixed Copper-Zinc Hexacyanoferrates as Cathode Materials for Aqueous Zinc-Ion Batteries, *Energy Storage Materials*, 2019, 19, 360-369.
- 9. Z. Liu, G. Pulletikurthi and F. Endres, A Prussian Blue/Zinc Secondary Battery with a

Bio-Ionic Liquid–Water Mixture as Electrolyte, ACS Applied Materials & Interfaces,2016, 8, 12158-12164.

- L.-P. Wang, P.-F. Wang, T.-S. Wang, Y.-X. Yin, Y.-G. Guo and C.-R. Wang, Prussian Blue Nanocubes as Cathode Materials for Aqueous Na-Zn Hybrid Batteries, *Journal* of Power Sources, 2017, 355, 18-22.
- Z. Liu, P. Bertram and F. Endres, Bio-Degradable Zinc-Ion Battery Based on a Prussian Blue Analogue Cathode and a Bio-Ionic Liquid-Based Electrolyte, *Journal of Solid State Electrochemistry*, 2017, 21, 2021-2027.
- 12. R. G. Parr and R. G. Pearson, Absolute Hardness: Companion Parameter to Absolute Electronegativity, *Journal of the American Chemical Society*, 1983, **105**, 7512-7516.
- G. Małecki and A. Ratuszna, Crystal Structure of Cyanometallates Me₃[Co(CN)₆]₂ and Kme[Fe(CN)₆] with Me=Mn²⁺, Ni²⁺, Cu²⁺, *Powder Diffraction*, 1999, 14, 25-30.
- J. Rodríguez-Hernández, E. Reguera, E. Lima, J. Balmaseda, R. Martínez-García and H. Yee-Madeira, An Atypical Coordination in Hexacyanometallates: Structure and Properties of Hexagonal Zinc Phases, *Journal of Physics and Chemistry of Solids*, 2007, 68, 1630-1642.
- 15. R. Rigamonti, Struttura Dei Cupriferrocianuri.- Nota Ii. Ferrocianuri Di Rame E Cationi Monovalenti, *Gazzetta Chimica Italiana*, 1937, **67**, 146-158.
- R. Martínez-García, E. Reguera, J. Rodriguez, J. Balmaseda and J. Roque, Crystal Structures of Some Manganese(Ii) and Cadmium Hexacyanoferrates (Ii,Iii) and Structural Transformations Related to the Sorption of Cesium, *Powder Diffraction*, 2004, 19, 255-264.
- R. Rigamonti, Struttura E Costituzione Chimica Di Alcuni Ferrocianuri, *Gazzetta Chimica Italiana*, 1938, 68, 803-809.