Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Electronic Supplementary Information for

Protonic Nanoenvironment Engineering for Tuning the Electrocatalytic Efficiency and Product Selectivity of O₂ Reduction

Hei Tung Yau, Zuo Hang Yu, and Edmund C. M. Tse*

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, China

* ECMT: ecmtse@hku.hk

Supplementary Figures S1-S12 and Tables S1.

Figure S1. Reaction between Amplex Red and H_2O_2 in a 1:1 stoichiometry in the presence of horseradish peroxidase (HRP), generating resorufin with a UV-vis absorption band at 571 nm.

Note S1. Equations to calculate the number of electrons transferred per O₂ during ORR in (a) M-TPY SAM, (b) M-TPY HBM, and (c) M-TPY HBM DBA.

Given that the ORR catalyzed by M-TPY SAM undergoes a mixture of 2e⁻ and 4e⁻ processes, while the ORR facilitated by M-TPY HBM and M-TPY HBM DBA respectively involves a mixture of 1e⁻ and 4e⁻,¹

(a) ϕ (M-TPY SAM) = 2(X) + 4(1 - X)

(b) $\phi(M-TPY HBM) = (X) + 4(1 - X)$

(c) ϕ (M-TPY HBM DBA) = (X) + 4(1 - X), where

 $\boldsymbol{X} = \left(\frac{\text{mole of } O_2 \text{ required for } H_2O_2 \text{ generation}}{\text{mole of } O_2 \text{ required for both } H_2O \text{ and } H_2O_2 \text{ generation}}\right)$

mole of O_2 required for H_2O_2 generation

= mole H_2O_2 of generated during ORR

mole of O_2 required for H_2O generation

 $= \left(\frac{\text{total charge required for both } H_2 O \text{ and } H_2 O_2 \text{ generation} - \text{charged required for } H_2 O_2 \text{ generation}}{Faraday \text{ constant} \times \text{number of electrons required by 1 mole of } O_2 \text{ for } H_2 O \text{ generation}}\right)$

Faraday constant = 96500 C/mol

Number of electrons required by 1 mole of O_2 for H_2O generation = 4

Figure S2. Quantification of H_2O_2 generated during ORR catalyzed by M-TPY SAM, M-TPY HBM, and M-TPY HBM DBA (M = Cu, Ni, Mn). (a, c, d) Standard calibration curve for H_2O_2 in different concentrations including 0.001 mM, 0.0025 mM, 0.005 mM, and 0.010 mM), and (b,c,f) UV-vis characterization of resorufin at 571 nm.

Figure S3. Preparation procedure of S-tritylated TPY.

4'-((6-(tritylthio)hexyl)oxy)-2,2':6',2"-terpyridine (S-tritylated TPY) Molecular Weight: 607.82

Figure S4. ¹H NMR (top) and ¹³C NMR (bottom) spectra of S-tritylated TPY.

Figure S5. Effect of ligand dilution ratios on structural integrity of Cu-TPY HBM. Cyclic voltammograms of a SAM of Cu-TPY diluted with 1-butanethiol (C4-SH) in a (a) 1:10, (b) 1:50 or (c) 1:100 ratio (blue) or diluted with 1-pentanethiol (C5-SH) in a (d) 1:10 ratio (blue) covered by a monolayer of DMPC lipids (red) in a solution of 1 mM K_3 Fe(CN)₆ in 100 mM KCl at a scan rate of 50 mV/s.

Figure S6. Comparison of oxygen reduction activity on different electrode surfaces. Linear sweep voltammograms of a bare Au electrode (yellow), a SAM of TPY ligands (grey), Cu-TPY SAM (blue), Ni-TPY SAM (purple), and Mn-TPY SAM (cyan) on Au electrode in an O₂-saturated 100 mM pH 7 sodium phosphate buffer solution at a scan rate of 10 mV/s. The changes in ORR current densities measured at 0.400 V versus RHE.

Figure S7. Metal content characterization of M-TPY SAM (M = Cu, Ni, Mn) by (a-c) ICP-MS analysis, and (d) their mass activity of ORR in a pH 7 100 mM sodium phosphate buffer at a scan rate of 10 mV/s.

Sample	Relative to I _{std} (M:Rh)	Metal Content ^(a) (nmol/cm ²)	Metal Content ^(b) (mol/cm ³)
Cu-TPY SAM	0.77	6.62	0.033
Ni-TPY SAM	0.09	4.70	0.024
Mn-TPY SAM	0.21	3.88	0.019

Table S1. Metal quantification results of M-TPY SAM (M = Cu, Ni, Mn).

^(a) represents the metal content that was measured on the Au electrode, with each having a surface area of $1 \times 1 \text{ cm}^2$. ^(b) represents the metal content that was measured within the overall volume of M-TPY SAM, considering its 2-nm thickness. ²The total volume amounts to $1 \times 1 \times 2 \times 10^{-7} \text{ cm}^3$.

Figure S8. Oxygen reduction activity of M-TPY SAM (M= Cu, Ni, Mn) in absence and presence of O_2 . Linear sweep voltammograms of a SAM of M-TPY on Au electrode in a N_2 -saturated (grey) or a O_2 -saturated (blue) 100 mM pH 7 sodium phosphate buffer solution at a scan rate of 10 mV/s.

Figure S9. Structural integrity of lipid monolayer in M-TPY HBM (M = Cu, Ni, Mn). Cyclic voltammograms of a SAM of M-TPY (blue) covered by a monolayer of DMPC lipids (red) incorporated with 1 molar equivalent of DBA (orange) in a solution of 1 mM $K_3Fe(CN)_6$ in 100 mM KCl at a scan rate of 50 mV/s.

Figure S10. Oxygen reduction activity of M-TPY HBM (M = Cu, Ni, Mn) with or without cholesterol incorporation. Linear sweep voltammograms of a SAM of M-TPY (blue) covered by a monolayer of DMPC lipids (red) or a monolayer of DMPC lipids incorporated with 20% w/w cholesterol (red, dotted) in a O₂-saturated 100 mM pH 7 sodium phosphate buffer solution at a scan rate of 10 mV/s.

Figure S11. Oxygen reduction activity of M-TPY HBM (M = Cu, Ni, Mn) incorporated with cholesterol and DBA. Linear sweep voltammograms of a SAM of M-TPY (blue) covered by a monolayer of DMPC lipids incorporated with 20% w/w cholesterol (red, dotted) and 1 molar equivalent of DBA (orange, dotted) in a O₂-saturated 100 mM pH 7 sodium phosphate buffer solution at a scan rate of 10 mV/s.

Figure S12. Structural integrity of lipid monolayer in M-TPY HBM (M = Cu, Ni, Mn) incorporated with cholesterol and DBA. Cyclic voltammograms of a SAM of M-TPY (blue) covered by a monolayer of DMPC lipids incorporated with 20% w/w cholesterol (red, dotted) and 1 molar equivalent of DBA (orange, dotted) in a solution of 1 mM $K_3Fe(CN)_6$ in 100 mM KCl at a scan rate of 50 mV/s.

References

- E. C. M. Tse, C. J. Barile, N. A. Kirchschlager, Y. Li, J. P. Gewargis, S. C. Zimmerman, A. Hosseini and A. A. Gewirth, Proton Transfer Dynamics Control the Mechanism of O₂ Reduction by a Nonprecious Metal Electrocatalyst, *Nature Materials*, 2016, **15**, 754-759.
- 2. T. Zeng, H.-L. Wu, Y. Li, E. C. M. Tse and C. J. Barile, Physical and Electrochemical Characterization of a Cu-based Oxygen Reduction Electrocatalyst inside and outside a Lipid Membrane with Controlled Proton Transfer Kinetics, *Electrochimica Acta*, 2019, **320**, 134611.