In Situ Built Nanoconfined Nb<sub>2</sub>O<sub>5</sub> Particles in 3D Interconnected Nb<sub>2</sub>C MXene@rGO Conductive Framework for High-Performance Potassium-Ion Batteries

Cong Liu,<sup>a,b</sup> Zhitang Fang,<sup>a</sup> Weizhi Kou,<sup>a</sup> Xiaoge Li,<sup>c</sup> Jinhua Zhou,<sup>d</sup> Gang Yang,<sup>d</sup> Luming Peng,<sup>a</sup> Xuefeng Guo,<sup>a</sup> Weiping Ding,<sup>a</sup> Wenhua Hou<sup>a</sup>\*

<sup>a</sup> Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

<sup>b</sup> School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, P.R. China.

<sup>c</sup> School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,
225009, P. R. China.

<sup>d</sup> Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P. R. China.

\* Corresponding author.

E-mail address: whou@nju.edu.cn (W. Hou)



Figure S1 Typical SEM images of (a) Nb<sub>2</sub>AlC and (b) multi-layered Nb<sub>2</sub>CT<sub>x</sub>.



Figure S2 Typical SEM images of Nb<sub>2</sub>O<sub>5</sub>/rGO.



Figure S3 Typical SEM images of Nb<sub>2</sub>O<sub>5</sub>.



Figure S4 XRD patterns of Nb<sub>2</sub>AlC and m-Nb<sub>2</sub>CT<sub>x</sub>.



Figure S5 TGA curves of  $Nb_2CT_x$  nanosheets and  $Nb_2O_5/Nb_2C/rGO$  aerogel.

As shown in **Fig. S5**, the final stable weights of Nb<sub>2</sub>CT<sub>x</sub> nanosheets and Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO are 103.8 wt% and 75.8 wt%, respectively. The weight change of pureNb<sub>2</sub>CT<sub>x</sub> nanosheets is (103.8–100) wt%=+3.8 wt%. The weight change of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO is (75.8–100) wt%= –24.2 wt%. There is no doubt that the weight change of pure rGO is –100 wt% (*i.e.*, fully oxidized/decomposed into gaseous products). Therefore, the content of rGO in Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO can be calculated based on the formula  $(1-A)\times3.8\%-A\times100\%=B$ , where A is the content of rGO in Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO (*i.e.*, –24.2 wt%). Hence, according to TGA results, the content of rGO in Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO sample is calculated to be 27.0 wt%.



Figure S6 Refined high-resolution Nb 3d XPS spectra of (a, b) Nb<sub>2</sub>O<sub>5</sub>/rGO and (c, d)

 $Nb_2O_5$  before (a, c) and after (b, d)  $Ar^+$  ion sputtering.



Figure S7 (a)  $N_2$  adsorption and desorption isotherms and (b) the corresponding poresize distribution curves of Nb<sub>2</sub>O<sub>5</sub>/rGO and Nb<sub>2</sub>O<sub>5</sub>.



Figure S8 GCD curves of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO at different current densities.



Figure S9 Capacitive- and diffusion-controlled contributions at 1.0 mV $\cdot$ s<sup>-1</sup> for the Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO.



Figure S10 HRTEM of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO electrode after being discharged to 0.01V.

HRTEM test was performed on the electrode after being discharged to 0.01 V to confirm the evolution of structure. As shown in **Figure 2i** and **Figure S10**, it can be observed that the interlayer distance of Nb<sub>2</sub>C is increased from 10.4 to 11.5 Å and that of Nb<sub>2</sub>O<sub>5</sub> is increased from 3.9 Å to 4.1 Å, indicating that K<sup>+</sup> is successfully intercalated into Nb<sub>2</sub>C and Nb<sub>2</sub>O<sub>5</sub> layers and thus the formation of K<sub>x</sub>Nb<sub>2</sub>C and K<sub>y</sub>Nb<sub>2</sub>O<sub>5</sub>.



Figure S11 Nb 3d XPS spectrum for the near-surface of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO.

As shown in **Figure S11**, the near-surface of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO exhibits four peaks at 210.0, 207.3, 206.4 and 204.1 eV, respectively. Combined with **Figure 5e**, the first two peaks are assigned to Nb<sub>2</sub>O<sub>5</sub> (K<sub>y</sub>Nb<sub>2</sub>O<sub>5</sub>), while the last two peaks can be indexed to Nb<sub>2</sub>C (K<sub>x</sub>Nb<sub>2</sub>C).



Figure S12 EIS spectra for Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO, Nb<sub>2</sub>O<sub>5</sub>/rGO and Nb<sub>2</sub>O<sub>5</sub>.



Figure S13 SEM images of (a-c) Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO, (d-f) Nb<sub>2</sub>O<sub>5</sub>/rGO and (g-i) Nb<sub>2</sub>O<sub>5</sub> electrodes after 100 cycles at a current density of  $0.1A \cdot g^{-1}$ .



**Figure S14** GCD curves of (a) PB in half-cell and (b) Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO//PB full-cell at a current density 0.1 A·g<sup>-1</sup>; (c) cycle performance of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO//PB full-cell at a current density of 0.1 A·g<sup>-1</sup> (inset shows LEDs powered by the full cell).

PB was prepared by a simple precipitation method. **Figure S14a** shows the GCD curves of PB in half-cell with charge and discharge capacities of 103.5 and 87.2 mAh·g<sup>-1</sup>, respectively. Before assembling the full-cells, the charge balance between anode and cathode needs to be optimized by controlling the mass ratio of anode and cathode based on the specific discharge capacities of Nb<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>C/rGO and PB in half-cells.

| Samples                                                 | Capacity (mA·g <sup>-1</sup> )<br>@rate (A·g <sup>-1</sup> ) | Capacity retention<br>@rate (A·g <sup>-1</sup> )@cycles | Ref.         |
|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|--------------|
| Sn/rGO                                                  | 222.4 @ 0.1<br>67.1 @ 2                                      | 69% @ 0.5 @ 500                                         | [1]          |
| MoS <sub>2</sub> /graphene                              | 511 @ 0.1<br>234 @ 2                                         | 75% @ 1 @ 800                                           | [2]          |
| N-Doped graphene                                        | 320 @ 0.05<br>170 @ 0.5                                      | 88% @ 0.5 @ 500                                         | [3]          |
| TiO <sub>x</sub> N <sub>y</sub> /C                      | 150 @ 0.2<br>75 @ 1.6                                        | 23% @ 0.2 @ 120                                         | [4]          |
| Onion-like carbon                                       | 245 @ 0.05<br>78 @10                                         | 71% @ 2 @ 980                                           | [5]          |
| $TiS_2$                                                 | 124 @ 0.05<br>92.1 @ 0.25                                    | 64% @ 0.05 @ 450                                        | [6]          |
| $Co_3O_4$ - $F_2O_3/C$                                  | 420 @ 0.05<br>278 @ 1                                        | 60% @ 0.05 @ 100                                        | [7]          |
| KTiOPO <sub>4</sub>                                     | $102 @ 0.005 \\ 50 @ 0.2$                                    | 77% @ 0.005 @ 200                                       | [8]          |
| BiOCl                                                   | 367 @ 50<br>175 @ 1                                          | 58% @ 0.05 @ 50                                         | [9]          |
| Sn <sub>4</sub> P <sub>3</sub> /MGS                     | 378 @ 0.1<br>113 @ 5                                         | 77% @ 0.5 @ 1000                                        | [10]         |
| Nb <sub>2</sub> O <sub>5</sub> /Nb <sub>2</sub> C/rGO-2 | 410 @ 0.1<br>230 @ 2                                         | 89% @ 2 @ 1000                                          | This<br>work |

**Table S1** A detailed comparison of the electrochemical performance of different anode materials for KIBs.

## **References:**

[1] Wang, H.; Xing, Z.; Hu, Z.; Zhang, Y.; Hu, Y.; Sun, Y.; Ju, Z.; Zhuang, Q. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. *Appl. Mater. Today*, **2019**, *15*, 58.

[2] Yao, K.; Xu, Z.; Ma, M.; Li, J.; Lu, F.; Huang, J. Densified metallic MoS<sub>2</sub>/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities. *Adv. Funct. Mater.*, **2020**, *30*, 2001484.

[3] Ju, Z.; Li, P.; Ma, G.; Xing, Z.; Zhuang, Q.; Qian, Y. Few layer nitrogen-doped graphene with highly reversible potassium storage. *Energy Storage Mater.*, 2018, *11*, 38.

[4] Tao, M.; Du, G.; Zhang, Y.; Gao, W.; Liu, D.; Luo, Y.; Jiang, J.; Bao, S.; Xu, M.  $TiO_xN_y$  nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. *Chem. Eng. J.*, **2019**, *369*, 828.

[5] Chen, J.; Yang, B.; Li, H.; Ma, P.; Lang, J.; Yan, X. Candle soot: onion-like carbon,

an advanced anode material for a potassium-ion hybrid capacitor. *J. Mater. Chem. A*, **2019**, *7*, 9247.

[6] Liu, T.; Zhang, X.; Xia, M.; Yu, H.; Peng, N.; Jiang, C.; Shui, M.; Xie, Y.; Yi, T.F.; Shu, J. Functional cation defects engineering in TiS<sub>2</sub> for high-stability anode. *Nano Energy*, **2020**, *67*, 104295.

[7] Sultana, I.; Rahman, M. M.; Mateti, S.; Ahmadabadi, V. G.; Glushenkov, A. M.; Chen, Y. K-ion and Na-ion storage performances of  $Co_3O_4$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticledecorated super P carbon black prepared by a ball milling process. *Nanoscale*, **2017**, *9*, 3646.

[8] Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C. F. Safe, Low-Cost, Fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. *Angew. Chem. Int. Ed.*, **2019**, *58*, 16474.

[9] Wang, J.; Wang, B.; Lu, B. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. *Adv. Energy Mater.*, **2020**, *10*, 2000884.

[10] Du, Y.; Yi, Z.; Chen, B.; Xu, J.; Zhang, Z.; Bao, J.; Zhou, X. Sn<sub>4</sub>P<sub>3</sub> nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. *J. Energy Chem.*, **2022**, *66*, 413.