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Experiment section

Synthesis of CoP/V(PO3)3@HCS

All reagents were purchased from Sigma-Aldrich and used without further purification. 

1.2 mmol 2,4-dihydroxybenzoic acid (DA) and 0.5 mmol methenamine (HMT) were dissolved 

in 60 mL H2O. Then, a 20 mL aqueous solution containing 0.24 mmol sodium oleate (SO) and 

0.0075 mmol Pluronic P123 was added. After stirring, 0.1 mmol VCl3 and 0.2 mmol CoCl2 

were added and stirred for 10 min, then transferred into a Teflon-lined stainless-steel autoclave 

and heated at 160 ℃ for 2 h (product noted: CoV@HCS). Afterward, the CoV@HCS were 

collected, washed, and dried at 80 ℃ under vacuum. The CoP/V(PO3)3@HCS was obtained by 

grinding with red P and heating at 1000 ℃ for 2 h under Ar (2 ℃ min−1). Additionally, 

CoP/V(PO3)3@HCS-900 and CoP/V(PO3)3@HCS-1100 were synthesized under 900 and 1100 

℃. For comparison, the CoP@HCS, V(PO3)3@HCS, and HCS were synthesized without the 

addition of CoCl2, VCl3, and metals, respectively.

Assembly and test of aqueous ZAB

The performance test of ZAB was carried out on the LAND-BT2016A workstation. The 

catalyst was configured as ink and cast evenly on carbon paper as an air cathode, and polished 

zinc plate as anode. 6 M KOH + 0.2 M Zn(CH3COO)2 was used as electrolyte. For comparison, 

20 wt% Pt/C was involved. During the stability experiment, the prepared catalyst and RuO2 

were mixed in a mass ratio of 1:1 to prepare the catalyst slurry as an air cathode using the same 

method as above. For comparison, Pt/C+RuO2 was also tested under the same conditions.

Assembly and test of flexible ZAB

Polyvinyl alcohol (PVA, 5 g) was dissolved in 50 mL H2O at 90 ºC with stirring for 1.5 h 

for a gel polymer electrolyte. Afterward, a mixed solution of 18 M KOH and 0.2 M 

Zn(CH3COO)2 was prepared and poured into the above gel with stirring for 30 min to freeze at 

20 °C to form the final electrolyte gel. Ultimately, this prepared gel, a piece of carbon load 

catalyst as an air cathode, and a polished zinc foil were assembled into flexible ZAB.

Electrochemical measurements

ORR electrochemical tests were conducted on CHI 760E electrochemical workstation with 
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a three-electrode system (reference electrode: Ag/AgCl electrode, auxiliary electrode: graphite 

rod). The rotating ring disk electrode (RRDE, diameter = 5.61 mm, PINE instruments, USA) 

and rotating disk electrode (RDE, diameter = 5 mm, PINE instruments, USA) loaded with 

catalyst ink were used as the working electrode. To form a well-distributed catalyst ink, 1 mg 

electrocatalyst was dispersed into a mixed solution (containing 100 µL isopropanol, 100 µL 

H2O, and 5 µL 5 wt% Nafion). Afterward, 25 µL catalyst ink was pipetted onto the surface of 

RDE and RRDE, respectively, and dried naturally. The measured potential was converted to 

the RHE from the Nernst equation (Fig. S1):

ERHE = EAg/AgCl + 0.059pH + 0.196

Cyclic voltammetry (CV) measurements were carried out in O2 or N2-saturated 0.1 M 

KOH solution with a scan rate of 50 mV s1. Linear sweep voltammetry (LSV) curves were 

obtained in O2-saturated 0.1 M KOH at a sweep rate of 10 mV s1 with various rotation speeds 

(400-2025 rpm) and the potential range from  0.9 to 0.2 V. The stability measurements were 

performed by using chronoamperometry at a rotation speed of 1600 rpm. The Tafel slopes were 

given by the equation:1

𝜂 = 𝑏 𝑙𝑜𝑔⁡(
𝑗
𝑗0

)

The number of electrons transferred (n) was determined in combination with the RDE test 

by the Koutechy-Levich (K-L) equation:2

1
𝑗

=
1
𝑗𝑘

+
1

𝐵1/2

𝐵 = 0.62𝑛𝐹𝐶0𝑣 ‒ 1/6𝐷2/3
0

Where j and jk represent the measured and kinetic current density (mA cm2), respectively. 

 is the angular velocity, n is the electron transfer number of O2, F is the Faraday constant (F 

= 96485 C mol1), C0 and D0 are the bulk concentration (1.2 × 103 mol L1) and diffusion 

coefficient (1.9×105 cm2 s1) of O2 in 0.1 M KOH,  is the dynamic viscosity (0.01 cm2 s1).𝑣

The percentage of H2O2 yield (%) and n during ORR were calculated in combination with 

the RRDE test according to the following equations:3

𝑛 = 4
𝐼𝑑

𝐼𝑑 + 𝐼𝑟⁄𝑁
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𝐻2𝑂2(%) = 200
𝐼𝑟/𝑁

𝐼𝑑 + 𝐼𝑟⁄𝑁

Where Id and Ir denote the disk and ring currents, respectively.

Materials characterization

The micromorphology of as-prepared catalysts was determined by using a scanning 

electron microscope (SEM, FEI Quanta 200) and transmission electron microscope (TEM, 

Talos F200S). Raman spectroscopy (Renishaw in Via Quotation) is used to analyze the degree 

of disorder and graphitization of all samples. The surface valence and composition of the 

catalyst are analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi) and X-ray 

diffraction (XRD, Rigaku D/Max-3c). Metal contents were investigated by inductively coupled 

plasma mass spectroscopy (ICP-MS, PerkinElmer corporation, FLexar-NexION300X). 

Brunauer−Emmett−Teller (BET) specific surface areas and pore size distribution were 

performed on nitrogen adsorption-desorption apparatus(3H-2000PS4). The contact angle of 

water was tested by a contact angle meter (JC2000D, China).

Computational methods and details

Spin-polarized DFT calculations were performed using the Vienna ab initio simulation 

package (VASP).4 The generalized gradient approximation proposed by Perdew-Burke-

Ernzerhof (GGA-PBE) is selected for the exchange-correlation potential.5 The pseudo-potential 

was described by the projector-augmented-wave (PAW) method.6 The geometry optimization 

is performed until the Hellmann–Feynman force on each atom is smaller than 0.03 eV·Å–1. The 

energy criterion is set to 10−5 eV in the iterative solution of the Kohn-Sham equation.

The ORR performance was explored under the theoretical framework developed by 

Nørskov et al.7 Here, the associative mechanism and a four-electron pathway were considered, 

according to which the ORR elementary reactions are described as follows:8, 9

O *
2  +  H2O +  e ‒  → OOH *  +   OH ‒ (G1)

OOH *  +  e ‒  → O *  +  OH ‒ (G2)

O *  +  H2O +  e ‒  → OH *  +  OH ‒ (G3)

OH *  +  e ‒  → *  +  OH ‒ (G4)
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Where * represents an active site. OOH*, O*, and OH* are the active sites with OOH, O, 

and OH intermediate adsorption, respectively. The free energy of the intermediates is defined 

as: 

G  E  ZPE  TS  GpH  GU

Where ΔE is the reaction energy of each step, obtained from DFT calculations; ZEP is 

the change of zero-point energies in the reactions; TS is the entropy contribution at 300 K.

GU is the influence of applied potential, defined as: 

GU = – eU

Where U is the potential at the electrode and e is the transferred charge. For the small 

difference between the vibrational frequencies of the adsorbents on the surface, the ∆ZPE and 

TS were taken from the previous literature.10
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Fig. S1. RHE voltage calibration. CHI 760E electrochemical workstation calibration. the RHE 

calibration of saturated Ag/AgCl electrode in 0.1 M KOH. The average value of the potential 

at zero current is regarded as the thermodynamic potential for hydrogen electrode reaction, it is 

only 0.002 V away from the value calculated by the Nernst equation. The current-voltage scans 

were run at a scan rate of 5 mV s1, and the average of the two potentials at which the current 

crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reactions.
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Fig. S2. XRD patterns of CoV@HCS.

Fig. S3. XRD patterns of (a) CoP@HCS and (b) V(PO3)3@HCS.

Fig. S4. Raman spectra of HCS.
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Fig. S5. N2 des/adsorption isotherms of (a) HCS, (b) CoP@ HCS, and V(PO3)3@HCS (inset: 

corresponding pore size distribution).

Fig. S6. (a) SEM, (b) TEM, and (c) HRTEM images of HCS.

Fig. S7. (a) TEM and (b) HRTEM images of HCS.
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Fig. S8. (a) High-resolution XPS spectra of C 1s region of CoP/V(PO3)3@NC. (b) XPS survey 

spectra of CoP/V(PO3)3@NC, CoP@HCS, V(PO3)3@HCS and the sample after stability.
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Fig. S9. (a) CV and (b) LSV polarization curves for CoP/V(PO3)3@HCS and CoV@HCS.

Fig. S10. LSV polarization curves for CoP/V(PO3)3@HCS-T (note: T is the different 

temperatures).

Fig. S11. LSV polarization curves for CoP/V(PO3)3@HCS and HCS.
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Fig. S12. CV curves of (a) CoP/V(PO3)3@HCS, (b) CoP@HCS, (c) V(PO3)3@HCS and (d) 

CoV@HCS at various scan rates in the non-Faradaic region. 

Fig. S13. Cdl values of CoP/V(PO3)3@HCS and CoV@HCS.
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Fig. S14. SEM of CoP/V(PO3)3@HCS after stability.

Fig. S15. High-resolution XPS spectra of (a) Co 2p, (b) V 2p, and (c) P 2p for 

CoP/V(PO3)3@HCS before and after stability.
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Fig. S16. Chronoamperometric (CP) response of CoP@HCS and V(PO3)3@HCS.

Fig. S17. SEM images of CoP@HCS and V(PO3)3@HCS after stability.
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Table S1. The metal content of the as-prepared samples according to inductively coupled 

plasma mass spectroscopy (ICP-MS) results.

Catalyst Co (wt.%)
V 

(wt.%)
CoP/V(PO3)3@NC 22.4 3.6
CoP@NC 17.3 ‑‑
V(PO3)3@NC ‑‑ 7.3
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Table S2. Comparison of CoP/V(PO3)3@NC with currently reported ORR electrocatalysts in 

0.1 M KOH solution.

Catalysts
Tafel slope

(mV 
dec1)

jL

(mA 
cm2)

Reference

CoP/V(VPO3)3@HCS 79.2 5.6 This work
Pt/C 86.5 4.9 This work

Co SAs/NPs 89.1 6.1 11

FeNx/C-700-20 93.0 5.7 12

Ru-FeRu@C/NC 99.3 5.2 13

Fe2O3/Fe5C2/Fe–N–C 86.5 4.8 14

NSC 112.4 5.4 15

Co3P/C 82.5 3.5 16

Fe/NC 90.2 5.3 17

Fe@NWC 109.1 4.9 18

Fe/NC CNFs 98.2 4 19

LSTFO-H 95.0 5.3 20

CoP 95.7 6.2 21

BCN/rGO-Co 70.5 5.4 22

Co/NC 91.1 5.4 15

FeCoP/C 55.0 5.1 23

FePc&rGO 39.1 5.4 24

COPBTC 143.0 4.5 25

N-G NSs 66.0 5.2 26
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Table S3. Comparison of CoP/V(PO3)3@NC-based ZABs with currently reported ZABs.

Catalysts
Open-
circuit 

voltage (V)

Power 
density 

(mW cm2)

Charge-discharge 
cycle stability (h)

Electrolyte Reference

CoP/V(PO3)3@HCS 1.56 182 710
6 M KOH + 0.2 M 

Zn(CH3COO)2
This work

Cu/Cu3P@NP-C-900 1.42 148 300
6 M KOH + 0.2 M 

Zn(CH3COO)2

27

WC/Co7Fe3-NPHC 1.43 270 550
6 M KOH + 0.2 M 

Zn(CH3COO)2

28

Co2P/Co-N-C 1.50 158 205
6 M KOH + 0.2 M 

Zn(CH3COO)2

29

CoxP-NC-420 1.37 54 100
6 M KOH + 0.2 M 

Zn(CH3COO)2

30

Ni2P/CNTs 1.42 153
6 M KOH + 0.2 M 

Zn(CH3COO)2

31

NCFPO-350 1.35 75 30
6 M KOH + 0.2 M 

Zn(CH3COO)2

32

NiFe(1:2)P/Pi 1.45 395 100
6 M KOH + 0.2 M 

Zn(CH3COO)2

33

CNCP-450 178 50
6 M KOH + 0.2 M 

Zn(CH3COO)2

34

FeCoP/C 1.39 115 100
6 M KOH + 0.2 M 

Zn(CH3COO)2

23

Co-FPOH 1.42 167 450
6 M KOH + 0.2 M 

Zn(CH3COO)2

35

Co/VN NPs@C 1.41 130 600
6 M KOH + 0.2 M 

Zn(CH3COO)2

36

Co@IC/MoC@PC 1.48 252 100
6 M KOH + 0.2 M 

Zn(CH3COO)2

37

LZAB@Co-SAs/N–
C/rGO

1.52 105
6 M KOH + 0.2 M 

Zn(CH3COO)2

38

BCN/rGO-Co 1.46 157 200
6 M KOH + 0.2 M 

Zn(CH3COO)2

22

CNT@SAC-Co/NCP 1.45 172 34
6 M KOH + 0.2 M 

Zn(CH3COO)2

39

ZAB-Fe3Co7-NC 1.52 133 400
6 M KOH + 0.2 M 

Zn(CH3COO)2

40

V-KFO/NF 1.29 140 550
6.0 M KOH + 0.02 

M Zn(CH3COO)2

41

Mnx(PO4)y/NPC 1.27 34
6.0 M KOH + 0.02 

M Zn(CH3COO)2

42
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CuNi2-S/G 1.32 127 210
6 M KOH + 0.2 M 

Zn(CH3COO)2

43

N-HPCs 1.41 158 100
6 M KOH + 0.2 M 

Zn(CH3COO)2

26

Co3O4@Ni2P 1.33 184 177
6 M KOH + 0.2 M 

Zn(CH3COO)2

44

S0.95NCF-600 1.46 500
6 M KOH + 0.2 M 

Zn(CH3COO)2

45

CoP/CoO@MNC-CN 1.42 153 500
6 M KOH + 0.2 M 

Zn(CH3COO)2

1

FeCo@CoNx@FePx/C 1.45 110 700
6 M KOH + 0.2 M 

Zn(CH3COO)2

46

Pt@CoN4-G 1.50 316
6 M KOH + 0.2 M 

Zn(CH3COO)2

47

FeNi/Co4N-NCS-zab 1.57 160 1450
6 M KOH + 0.2 M 

Zn(CH3COO)2

48

ES-Co/Zn-CNZIF 1.53 215 254
6 M KOH + 0.2 M 

Zn(CH3COO)2

49

SC-CuSA-NC 1.49 125 120
6 M KOH + 0.2 M 

Zn(CH3COO)2

50

CoSA-RuO2- NUCN 1.55 157 800
6 M KOH + 0.2 M 

Zn(CH3COO)2

51

Fe/Cu-N-C 1.48 183 140
6 M KOH + 0.2 M 

Zn(CH3COO)2

52

Co SAs/NPs CNF 1.43 152 450
6 M KOH + 0.2 M 

Zn(CH3COO)2

11

Ni-SAs/HCNFs/Co-
NAs

1.45 140.7 220
18M KOH + 

0.02 M 

Zn(CH3COO)2

53

Fe–N–C/Fe3C-op 1.56 137.4 450
6 M KOH + 0.2 M 

Zn(CH3COO)2

54
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