Electronic Supplementary Information

Boosting efficiency of deep-red Ir(III) complexes by modulating nitrogen atom for high-performance OLEDs

Li-Li Wen,^a Jia-Ming Zhang,^b Yi-Ping Han,^a Ying-Chen Duan,^{*a} Wen-Fa

Xie,*b Kui-Zhan Shao,c Guo-Gang Shan,*c Zhong-Min Sua

^a School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry Changchun, Jilin 130022, P. R. China, Email: <u>duanyc122@nenu.edu.cn</u> (Y. C. Duan)

^b State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China, E-mail: <u>xiewf@jlu.edu.cn</u> (W. F. Xie)

^c Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun,130024, P. R. China, E-mail:shangg187@nenu.edu.cn <u>shangg187@nenu.edu.cn</u> (G. G. Shan)

List of Contents for Supplementary Information:

- 1. General Information
- 2. Structure characterization including NMR and MS spectra
- 3. DSC and TGA analysis
- 4. X-ray crystal structure analysis
- 5. Photophysical properties
- 6. OLED Device characterization

General Information

Physical Methods.

NMR experiments were recorded using a Bruker Avance 500 NMR spectrometer in $CDCl_3$ and $DMSO-d_6$ with the TMS as standard. Mass spectra (MS) was obtained with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). TGA measurements were carried out on a TGA Q50 analyzer and DSC curves with DSC Q2000 differential scanning calorimeter. UV-vis absorption spectra were recorded in CH₂Cl₂ solutions using a Cary 50 spectrophotometer. Steady-state emission properties were recorded using a FL-4600 spectrophotometer at room temperature. The cyclic voltammetry analysis was performed by a standard three-electrode method on a 620E electrochemical workstation at the scan rates from 100 mV/s. Platinum wire was used as a counter electrode; the reference electrode was a saturated calomel electrode, and the working electrode was a glassy carbon electrode. The experiments were carried out in degassed CH₂Cl₂ and DMF solutions containing tetrabutylammonium perchlorate salt (0.1 M) as the electrolyte and the concentration of the complexes is ca. 1×10^{-3} mol L⁻¹. The potentials are calculated vs the Fc⁺/Fc couple. The single crystal structure was mounted on a Bruker Apex II CCD diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.54178$ Å).

Computations

To analyze the emission properties of $Ir(iqbt)_2IPO$ and $Ir(qabt)_2IPO$, TD-DFT calculations were carried out using the Gaussian 16 C01 code. Theoretical calculation were performed utilizing the BL3YP functional, the SDD basis set and effective core potentials for Ir atom, and 6-31G* basis set for all nonmetal atoms.

Fabrication and Measurement of OLEDs

OLED devices were prepared on ITO-coated glass substrates (25 Ω sq⁻¹) by vacuum evaporation method. Prior to evaporation, the ITO substrates were deal with a regular procedure. All the organic layers and cathodes were successively deposited on the substrate by thermal evaporation at a base pressure of ~5 × 10⁻⁴ Pa. EL performance measurement of OLED were recorded by Ocean Optics Maya 2000-PRO spectrometer and a Keithley 2400 source meter.

Figure S4. The ¹³C NMR spectrum of ligand IPO.

Figure S8. The ¹³C NMR spectrum of complex Ir(qabt)₂IPO.

Figure S11. The DSC (a) and TGA (b) of designed Ir(III) complexes Ir(iqbt)₂IPO and Ir(qabt)₂IPO.

Temperature (°C)

Temperature (°C)

complex	Ir(iqbt) ₂ IPO
Empirical formula	$C_{56}H_{38}IrN_4OPS_2$
Formula weight	1070.19
Temperature/K	173.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.1339(3)
b/Å	17.3611(4)
$c/{ m \AA}$	21.2247(5)
$lpha/^{\circ}$	90
$eta /^{\circ}$	98.0580(10)
$\gamma^{/\circ}$	90
Volume/Å ³	4791.85(19)
Z	4
pcalcg/cm ³	1.483
μ/mm^{-1}	6.868
F(000)	2136.0
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	6.604 to 127.508
Index ranges	$\text{-15} \le h \le 14, \text{-20} \le k \le 20, \text{-24} \le l \le 24$
Reflections collected	45873
Independent reflections	7889 [$R_{int} = 0.0559, R_{sigma} = 0.0366$]
Goodness-of-fit on F ²	1.199
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0529, wR_2 = 0.1174$
Final R indexes [all data]	$R_1 = 0.0514, wR_2 = 0.1099$

Table S1. The detailed crystallographic data of Ir(iqbt)₂IPO.

Ir(iqbt) ₂ IPO					
Selected bonds	Bond length (Å)				
Ir-C(1)	2.054(6)				
Ir-C(18)	2.076(6)				
Ir-C(35)	2.058(7)				
Ir-C(40)	2.086(6)				
Ir-N(1)	2.059(5)				
Ir-N(2)	2.072(5)				
Selected angles	(°)				
C(1)-Ir-N(1)	78.9(2)				
C(18)-Ir-N(2)	77.9(2)				
C(35)-Ir-C(40)	77.8(3)				
C(1)-Ir-C(35)	165.7(2)				
C(18)-Ir-C(40)	171.8(2)				
N(1)-Ir-N(2)	177.4(2)				

Table S2. The selected bond lengths and angles of Ir(iqbt)₂IPO.

Figure S12. The PL spectra of $Ir(iqbt)_2IPO$ and $Ir(qabt)_2IPO$: (a) measured at room temperature in their pure films ($\lambda_{ex} = 460$ nm), (b) measured at room temperature in their solid state ($\lambda_{ex} = 460$ nm).

Figure S13. The PL spectra of complexes $Ir(iqbt)_2IPO$ and $Ir(qabt)_2IPO$ in degassed 2-methyltetrahydrofuran at 77 K (5 × 10⁻⁵ M and $\lambda_{ex} = 520$ nm).

Figure S14. Theoretical contours and energy levels of the HOMO, HOMO-1, and LUMO for $Ir(iqbt)_2IPO$ and $Ir(qabt)_2IPO$ based on its optimized T_1 geometry from different angles.

Table S3 The Cartesian coordinates of the optimized triplet-state geometry of designed complexes studied in this work.

Ir(iqbt)₂IPO

Ir	7.6739577018	6.4267161328	15.2293143945
S	10.7460824038	3.1169953980	16.1786011104
S	4.6180435084	5.5860294358	18.5052638106
Р	2.2318036824	7.9474570331	13.1793456030
N	7.9694038801	4.8879305745	13.8205336171
Ν	7.3982024595	7.8784634528	16.7075773542
Ν	8.2160423141	8.4818029544	13.1528831347
0	1.8003204995	6.7281057384	12.4071837648
С	6.2393673237	7.5130387443	14.0696746582
С	6.2432051967	5.5117585785	16.3812073395
С	6.7880186192	8.4407812363	13.1571589773
С	6.3620096762	7.6455484422	17.6432167585
С	5.5840807996	4.2444090164	16.4349303351
С	6.8280825639	9.8513237663	18.6829543177
С	9.1479470038	5.2552655226	16.1574401977
С	8.8942995308	7.6566263392	14.0118724215
С	9.5695864190	4.1886552454	15.3699326123
N	10.2064839049	7.9228999112	13.7650378084
С	6.0244319347	8.6635998694	18.6263690884
С	5.7184859994	3.1244352018	15.5770641366
Н	6.4054083129	3.1728121361	14.7429332983
С	4.6419128439	9.1408228992	12.3477784270
Н	4.0409992647	9.7580594325	11.6880814218
С	9.8084811823	5.2238516351	17.4467594511
С	8.1083890473	9.0098939657	16.7821705203
Н	8.8981032816	9.1222403341	16.0502234074

С	9.6659365021	6.1159777709	18.5313050572
Н	8.9799691932	6.9496542576	18.4468532188
С	5.8002829015	6.3660954292	17.4761405260
С	11.4371225785	3.9299960832	18.7778525897
Н	12.1150236395	3.0865587692	18.8744845038
С	9.0863773118	9.2409734891	12.3870834671
Н	8.7547739833	9.9503234296	11.6466228256
С	9.3123668808	3.0089869194	13.0687353590
С	1.6766993364	7.8922657014	14.9231866336
С	11.2732030602	4.8332098533	19.8234835626
Н	11.8314723810	4.6922827381	20.7452451637
С	3.9166889319	2.9724967366	17.7438305398
Н	3.2236407182	2.9130008627	18.5784645275
С	6.0316470210	9.2481791093	12.3095666466
Н	6.4981480631	9.9506968547	11.6237526966
С	8.5039552617	2.9201588149	11.8897233563
С	10.4184862906	2.1250085480	13.1765420404
Н	11.0938515469	2.1957854681	14.0180846668
С	10.7051227616	4.1315912929	17.6039283308
С	8.9728105268	4.0002466124	14.0678619971
С	4.6629697343	4.1132476929	17.5153859074
С	4.0337093882	8.2369617227	13.2294111525
С	1.4847822088	9.4681565516	12.4692674589
С	7.8873576726	9.9912794839	17.7370559471
Н	8.5129031986	10.8782253730	17.7463394879
С	10.3901726536	5.9205324840	19.6998835481
Н	10.2693761266	6.6109808991	20.5301362242
С	4.8389495248	7.4411629168	14.0705390834
Н	4.3555095481	6.7366387411	14.7429779889
С	0.7323339303	9.3149949345	11.2969708974
Н	0.6351911471	8.3224370334	10.8671702998
С	4.0750005076	1.8821507956	16.8680956519

Н	3.4973991587	0.9764754244	17.0285027473
С	7.2270665690	4.8003886417	12.6783183297
Н	6.4353786612	5.5316793086	12.5877738095
С	0.9949557144	11.8448229217	12.4521879008
Н	1.0949634733	12.8278375564	12.9050856854
С	0.0907507607	6.9821862605	16.5175527598
Н	-0.7393837210	6.3172445975	16.7412330472
С	6.5593307000	10.8495087880	19.6384438290
Н	7.1915890652	11.7339743022	19.6573140663
С	0.6030856614	7.0406914859	15.2208821587
Н	0.1902289692	6.4202046709	14.4309776633
С	10.3394627336	8.8893911755	12.7717210535
Н	11.3044708694	9.2332884439	12.4322655019
С	4.9715273349	1.9685581963	15.7980761807
Н	5.0892020920	1.1224872110	15.1263612038
С	7.4379621893	3.8418838390	11.7277536408
Н	6.7996012713	3.7976408099	10.8512354725
С	8.7908130996	1.9366972070	10.9094715301
Н	8.1554920216	1.8817386733	10.0292640864
С	1.6092063898	10.7417535526	13.0449179695
Н	2.1817612723	10.8762055326	13.9585938858
С	0.2488385263	11.6853270861	11.2806627922
Н	-0.2310729744	12.5458338249	10.8214870009
С	9.8562598715	1.0776994273	11.0628321187
Н	10.0692100825	0.3282001274	10.3055413921
С	2.2393323443	8.6731077347	15.9439724427
Н	3.0941465895	9.3111396362	15.7373331143
С	5.5046042052	10.7171840842	20.5384704600
Н	5.3085159337	11.4925432962	21.2733554372
С	11.3441860026	7.3037737345	14.4366960522
Н	11.9608036100	8.0731766871	14.9121165812
Н	11.9522306672	6.7505441409	13.7142591044

Н	10.9675354630	6.6163754805	15.1911455940
С	10.6829725576	1.1844232107	12.2016451046
Н	11.5385852077	0.5246298998	12.3129520459
С	0.1176565512	10.4206815854	10.7048609127
Н	-0.4649334473	10.2932156294	9.7961471736
С	1.7255181009	8.6129065679	17.2404029253
Н	2.1766548659	9.2122856177	18.0263917558
С	0.6484901333	7.7702500403	17.5266176919
Н	0.2506458165	7.7218381239	18.5370872622
С	4.9501017044	8.5730986242	19.5347623084
Н	4.2761387871	7.7282004821	19.5089704344
С	4.6995619324	9.5788594778	20.4739077304
Н	3.8632692980	9.4633665169	21.1582607201

Ir(iqbt)₂IPO

Ir	7.6137410540	6.3758949540	15.2568852293
S	10.8949697592	3.3808883282	16.3040094106
S	4.5048494187	5.3077686330	18.3690457462
Р	2.2130624588	7.9917421751	13.1572843264
Ν	8.0295615777	4.8540845115	13.8730758051
Ν	7.1985077219	7.7999706295	16.7309716780
Ν	8.2101897374	8.4188000855	13.1395683284
0	1.7200028507	6.8148312814	12.3585846722
С	6.2179894277	7.4565584142	14.0139655484
С	6.1355703610	5.4313819327	16.2666214935
С	6.7852658394	8.3762543084	13.1110734003
С	6.2759304077	7.4342999605	17.6885781159
С	5.3825057094	4.2027502391	16.1367587762
С	6.6093762159	9.6522091299	18.6664390166
С	9.1923723324	5.4297182945	16.1928772498
С	8.8662027606	7.6374722612	14.0488622073

С	9.5959080999	4.2604025363	15.4968858761
Ν	10.1827588819	7.8947406752	13.8292636501
С	5.9809268287	8.3673568325	18.7462832354
С	5.4305341440	3.2184050650	15.1263130862
Н	6.0964950735	3.3467115296	14.2841672101
С	4.6527829663	9.1044085912	12.2926618792
Н	4.0628457126	9.7324022171	11.6333059093
С	9.9930295707	5.6187018083	17.3776922444
С	7.7097764756	9.0532813792	16.7552770488
Н	8.4010621440	9.2871987237	15.9526138133
С	9.9519584760	6.6592183376	18.3337410382
Н	9.2382487474	7.4648964399	18.2159961208
С	5.7210482451	6.1463686826	17.4265080117
С	11.8180165841	4.5708243367	18.6769817770
Н	12.5338433987	3.7641094065	18.8083575831
С	9.0969426949	9.1478263090	12.3640401193
Н	8.7830364378	9.8234938299	11.5858219380
С	9.2529910888	2.8231479176	13.3642251538
С	1.7007057624	7.8929296968	14.9132301106
С	11.7439637843	5.6145783917	19.6024811859
Н	12.4092449054	5.6202516730	20.4611574445
С	3.6596481890	2.8583488356	17.2931832040
Н	2.9765098611	2.7249036586	18.1271335692
С	6.0432908245	9.1890532981	12.2555762878
Н	6.5235075376	9.8848215146	11.5730890787
С	8.6043295892	2.8533223485	12.0873256243
С	10.0948303875	1.7229883103	13.6551073172
Н	10.5653978383	1.6320763545	14.6257758885
С	10.9556497302	4.5898259640	17.5846478618
С	8.9860612953	3.9271416691	14.2526972428
С	4.4700064361	3.9863664308	17.2053358620
С	4.0276976695	8.2171901375	13.1791720663

С	1.5141027106	9.5625623061	12.5134088792
С	10.8154610195	6.6511925802	19.4243476715
Н	10.7660456058	7.4586931966	20.1497364785
С	4.8166825320	7.4052207358	14.0180301658
Н	4.3194232751	6.7124777947	14.6903507611
С	0.7126518699	9.4732904851	11.3671761513
Н	0.5545051054	8.4978013592	10.9169652964
С	3.7411374431	1.9038958057	16.2777011510
Н	3.1141977833	1.0179451196	16.3214737984
С	7.4852427226	4.7729829358	12.6354012162
Н	6.7621392445	5.5453423750	12.3960177525
С	1.1366372392	11.9587765992	12.5707641289
Н	1.3001716077	12.9245323289	13.0417998494
С	0.1505970358	6.9383641736	16.5170011097
Н	-0.6795100568	6.2728327958	16.7388641696
С	6.3543519613	10.6257149893	19.6552199439
Н	6.8499516783	11.5856024841	19.5509029712
С	0.6283609319	7.0394730815	15.2096069122
Н	0.1895625718	6.4509439003	14.4093585337
С	10.3388636589	8.8159435436	12.7986753832
Н	11.3119915068	9.1486408524	12.4725285778
С	4.6206852572	2.0901657827	15.2016644946
Н	4.6690359902	1.3464049834	14.4115665000
С	8.8449761010	1.8263216457	11.1512735749
Н	8.3360080445	1.8935806878	10.1950488060
С	1.7202534815	10.8142079082	13.1134256383
Н	2.3339244020	10.9002399606	14.0060044714
С	0.3406478367	11.8630140605	11.4253775751
Н	-0.1147052571	12.7559939263	11.0049546571
С	9.6905057352	0.7738696048	11.4588342813
Н	9.8681751573	-0.0147079305	10.7328962989
С	2.2957719854	8.6340401645	15.9456856010

Н	3.1470312136	9.2767745182	15.7385674923
С	5.5057794112	10.3508070273	20.7130160722
Н	5.3147217873	11.1048763715	21.4713746434
С	11.3085634480	7.2884786308	14.5395235529
Н	12.2177565506	7.8233031126	14.2575348428
Н	11.4081696042	6.2348889241	14.2703727496
Н	11.1602374186	7.3679187242	15.6160614958
С	10.3090937339	0.7216594035	12.7202070951
Н	10.9578632399	-0.1125222404	12.9723575427
С	0.1291337413	10.6207926467	10.8252626578
Н	-0.4912849980	10.5432848231	9.9362661300
С	1.8184630723	8.5291819374	17.2530826066
Н	2.2940523196	9.0959969305	18.0489314900
С	0.7430705801	7.6837726709	17.5383404375
Н	0.3732541979	7.6013511371	18.5571407578
С	5.1272046602	8.1144900478	19.8478255215
Н	4.6540469112	7.1486569177	19.9673103127
С	4.8954320900	9.0867438753	20.8079379670
Н	4.2388216972	8.8634903330	21.6441459411
Ν	7.7329039048	3.8576419015	11.7323894224
Ν	7.4673922226	9.9824340318	17.6437390253

Table S4.	Calculated	transition	wavelength	and	molecular	orbital	analysis	in	the
triplet state	for Ir(iqbt)	2IPO and	Ir(qabt) ₂ IPC) cal	culated by]	FDDFT	approach	•	

		λ_{Expt}		Configuration d			³ MLCT(%
	λ^a	b	E c			Nature)
	71	682	1.7		(83%	³ MLCT/ ³ LC/ ³ LLC	13.72
Ir(iqbt) ₂ IPO	2		4	H→L)	Т	
				H-	(8%)	³ MLCT/ ³ LLCT/ ³ L	
				1→L		С	
Ir(qabt) ₂ IP	67	680	1.8		(81%	³ MLCT/ ³ LC/ ³ LLC	16.45
0	4		4	H→L)	Т	

H-	(11%	³ MLCT/ ³ LLCT/ ³ L
1→L)	С

^{*a*} Calculated emission wavelengths. ^{*b*} Measured emission wavelengths. ^{*c*} Excitation energy. ^{*d*} H, H-1 and L denote HOMO, HOMO-1 and LUMO, respectively; data in parentheses are the contributions of corresponding excitations.

Figure S15. (a) The energy levels diagram of devices B1. (b) The energy levels diagram of devices B2. (c) Device structure of B1 and B2. (d) EL spectra of both devices B1 and B2. (e) J–V–L characteristics. (f) CE, PE, EQE vs luminance.