Electronic Supplementary Information

Shape-Controlled Synthesis and Self-Assembly of Highly Uniform Upconverting Calcium Fluoride Nanocrystals

Taejong Paik,^{*a,b,**} *Nicholas J Greybush*,^{*c*} *Stan Najmr*,^{*d*} *Ho Young Woo*,^{*a*} *Seong Vin Hong*,^{*a*} *Seung Hyeon Kim*,^{*b*} *Jennifer D. Lee*,^{*d*} *Cherie R. Kagan*^{*c,d,e*} *and Christopher B. Murray*^{*c,d,**}

^aSchool of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea

^bDepartment of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

^cDepartment of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States

^dDepartment of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States

^eDepartment of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States

Experimental Section

Materials. All chemicals were used as obtained without further purification. Calcium carbonate (CaCO₃, 99.9%), lithium fluoride (LiF, 99.99%), erbium oxide (99.99%), thulium oxide (99.99%), ytterbium oxide (99.99%), oleic acid (OA, technical grade, 90%), and 1-octadecene (ODE, technical grade, 90%), were purchased from Sigma–Aldrich. Trifluoroacetic acid (99.5+%) was purchased from Alfa Aesar.

Synthesis of CaTFA₂ precursors. Calcium trifluoroacetate (CaTFA₂) precursors were synthesized by dissolving 10 g of CaCO₃ in 100 mL of a trifluoroacetic acid/deionized water mixture (50/50 vol%) at room temperature. Evolution of CO₂ gas was observed for a few seconds after adding CaCO₃ in the TFA solution. The solution was stirred for additional two hours. The CaTFA₂ precursors were collected by removing the solution *via* vacuum distillation.

Synthesis of LnTFA₃ precursors. Lanthanide trifluoroacetate (LnTFA₃) precursors were synthesized by dissolving 10 g of lanthanide oxide (eg. Er_2O_3 , Yb2O₃, Tm2O₃) in 100 mL of a trifluoroacetic acid/deionized water mixture (50/50 vol%) and stirred under refluxing until oxide precursors were completely dissolved. The LnTFA₃ precursors were collected by vacuum distillation.

Synthesis of CaF₂ spherical NCs. CaTFA₂ (2 mmol), LiF (6 mmol), OA (30 mL), and ODE (30 mL) were added into a 125 mL three-neck flask and degassed at 125 °C for one hour. The mixture was then heated to 300–320 °C and kept at this temperature for 30 min. After cooling the reaction mixture to room temperature, the nanocrystals were precipitated by adding excess ethanol and collected by centrifugation at 4000 rpm for two minutes. The purification was performed twice by re-dispersing in hexane and precipitation with ethanol. After purification, hexane was added to the

precipitates to disperse the NCs in the solution. Residual LiF was removed by centrifugation at 3000 rpm for two minutes. The thermal decomposition of CaTFA₂

Synthesis of truncated CaF₂ octahedra. LiF (6 mmol), OA (15 mL), and ODE (15 mL) were added into a 125 mL three-neck flask and degassed at 125 °C for one hour. CaTFA₂ (2 mmol), OA (15 mL), and ODE (15 mL) were added into the other 125 mL three-neck flask and degassed at 125 °C for one hour. The mixture containing LiF was then heated to 300–320 °C and then the solution of CaTFA₂ was slowly injected into the mixture of LiF and OA/ODE for 15 min. The reaction was kept for an additional 15 min. After cooling the reaction mixture to room temperature, the NCs were precipitated by adding excess ethanol and collected by centrifugation at 4000 rpm for two minutes. The purification was performed twice by re-dispersing in hexane and precipitation with ethanol. After purification, hexane was added to the precipitates to disperse the NCs in the solution. Residual LiF was removed by centrifugation at 3000 rpm for two minutes.

Synthesis of CaF_2 NWs. CaTFA₂ (2 mmol), OA (1 mL), and ODE (59 mL) were added into a 125 mL three-neck flask and degassed at 125 °C for one hour. The mixture was then heated to 280 °C and kept at this temperature for 30 min. The NWs were purified using the same procedure as for the spherical CaF₂ synthesis.

Synthesis of lanthanide-doped CaF_2 NCs and NWs. Lanthanide-doped CaF_2 NCs and NWs were synthesized using the same experimental conditions as those used for undoped samples except for the use of a mixture of CaTFA₂ and LnTFA₃ precursors.

Self-assembly of CaF₂ NCs and NWs. Self-assembly of CaF₂ NCs and NWs was performed *via* liquid interfacial assembly procedure previously reported. Briefly, a Teflon well was filled with diethylene glycol subphase, and then 30 μ L of NC dispersed in hexane solution was dropped on

top of subphase. A Teflon well was covered with a glass slide to induce slow evaporation of hexane. After self-assembled superlattices were formed, the films were transferred onto carbon-coated TEM grids for microscopic analysis.

Characterization. The TEM images and SAED data were collected using a JEM-2100 microscope (JEOL, Ltd.) operating at 200 kV. The elemental compositions of Er^{3+} , Yb^{3+} doped CaF_2 NCs were collected via energy dispersive X-ray spectroscopy in scanning TEM (STEM-EDX) using a JEOL JEM-F200 system operated at 200 kV. Simulated electron diffraction patterns of CaF_2 NCs were obtained using the CrystalMaker software (Oxfordshire, UK). The atomic coordinates and sizes of the CaF_2 NCs were constructed from the cubic CaF_2 unit cell (JCPDS no. 87-0971). Powder X-ray diffraction measurements were performed using a Rigaku Smartlab high-resolution diffractometer (Rigaku Corporation). SAXS measurements were performed at the Multi-Angle X-ray Scattering Facility at the University of Pennsylvania. Information regarding the size and shape was extracted by the X-ray simulation of the SAXS results using Datasqueeze software. Photoluminescence spectra were collected using the Edinburgh FS5 spectrofluorometer (Edinburgh Instruments Ltd.). Upconversion luminescence was measured with excitation at 980 nm using a diode laser. The absorption spectra were collected using the JASCO-770 spectrophotometer (JASCO, Inc.).

Fig. S1 Fast Fourier transform of high-resolution transmission electron microscopy (TEM) images along the (a) [110] projection and (c) [112] projection and (b) and (d) the simulated electron diffraction patterns from the [110], and [112] zones, respectively.

Fig. S2 (a) Low-magnification and (b) high-magnification TEM images of CaF_2 nanocrystals synthesized at 320 °C for one hour.

Fig. S3 (a) Low-magnification and (b) high-magnification TEM images of CaF_2 nanowires.

Fig. S4 (a) TEM images of CaF_2 nanowires synthesized at a, (b) 280 °C for one hour and (c, d) 290 °C for 30 min.

Fig. S5 Schematics of the cross-sections of CaF_2 nanowires placed along the (a) (100) and (b) (110) planes parallel to the substrate. (c) Electron diffraction pattern of self-assembled CaF_2 nanowires. Mark "A" corresponds to the diffraction from the A-orientation of CaF_2 and mark "B" is attributed to the electron diffraction of the B-orientation.

Fig. S6 Upconversion luminescence spectra of Tm^{3+} , Er^{3+} , Yb^{3+} triply doped CaF_2 nanocrystals. The atomic concentrations of Er^{3+} and Yb^{3+} are 2% and 20%, respectively, and the concentration of Tm^{3+} is varied as 0.1%, 0.5%, and 1%. The emission spectra are normalized to the green emission peaks at 540 nm.

Fig. S7 TEM images of (a) CaF_2 nanospheres, (b) CaF_2 nano-octahedra, and (c) CaF_2 nanowires used for UC measurements.

	nanospheres	nano-octahedra	nanowires
Ca (at.%)	78.31	78.21	78.72
Er (at.%)	1.97	1.92	1.98
Yb (at.%)	19.72	19.87	19.30
Total (at.%)	100	100	100

Table S1 Elemental composition of the $CaF_2 NCs$.