A latest fluoride with excellent structural stiffness for ultra-efficient

photoluminescence and specific four-peak emission temperature

sensing

Kejie Li^a, Mengmeng Dai^a, Zuoling Fu^{*a}, Zhiying Wang^a, Hanyu Xu^a and Rong Wang^a

Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, Jilin University, Changchun 130012, China. E-mail: zlfu@jlu.edu.cn (Z. L. Fu)

Figure S1 (a) the octahedral cones with edge length d. (b) traditional sphere with radius r.

Figure S2 Diffuse reflectance spectrum and band gap calculation.

Figure S3 Calculated total DOS and atom-resolved PDOS of $LiYF_4$: (a) total; (b) Li; (c) Y; (d) F.

Figure S4 The XRD patterns of α -NaYF₄ (a) and β -NaYF₄ (b).

Figure S5 FTIR spectra of LiYF4,, $\alpha\text{-NaYF}_4$ and $\beta\text{-NaYF}_4.$

Figure S6 The relationship between ln(I) and ln(P) for $LiYF_4:1\% Er^{3+}$ under 980 nm (a) and 808 nm (b) excitation in the visible region and near infrared regions (c).

Figure S7 Diffuse reflectance spectrum of LiYF₄ host (a) and LiYF₄:1%Er (b).

Figure S8 (a) The XRD patterns of $LiYF_4:18\%Yb^{3+}$, $x\%Er^{3+}$ (x=1, 2, 3, 4, 5) with the standard XRD data of LiYF4 (DPF 81–1940). (b) Visible PL spectra and (c) NIR PL spectra of the $LiYF_4:18\%Yb^{3+}$, $x\%Er^{3+}$ (x=1, 2, 3, 4, 5) under 980 nm excitation.

Figure S9 (a) The XRD patterns of LiYF₄: 18%Yb³⁺, 3%Er³⁺, x%Ce³⁺ (x=1, 2, 3, 4) with the standard XRD data of tetragonal phase LiYF₄ (DPF 81–1940). (b) The XRD patterns of LiYF₄: 18%Yb³⁺, 3%Er³⁺, x%Ho³⁺ (x=0.2, 0.4, 0.6, 0.8, 1.0) with the standard XRD data of tetragonal phase LiYF₄ (DPF 81–1940).

Figure S10 The PL spectra for the $LiYF_4$: 18%Yb³⁺, 3%Er³⁺, 2%Ce³⁺ (a) and $LiYF_4$: 18%Yb³⁺, 3%Er³⁺, 1%Ho³⁺ (b) with different depths of chicken breast.

Figure S11 (a) The XRD patterns of $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $1\%Ho^{3+}$ and $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $2\%Ce^{3+}$ with the standard XRD data of tetragonal phase $LiYF_4$ (DPF 81–1940). SEM image of $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$ (b), $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $1\%Ho^{3+}$ (c) and $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $2\%Ce^{3+}$ (d).

Figure S12 The integrated intensity summarizing of NIR-IIb (region 1.2.3) emission in $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$ (a), $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $0.2\%Ho^{3+}$ (b) and $LiYF_4:18\%Yb^{3+}$, $3\%Er^{3+}$, $2\%Ce^{3+}$ (c) at different temperature;

Figure S13 Temperature-dependent NIR-IIb emission spectra of $LiYF_4:18\% Yb^{3+}$, $3\% Er^{3+}$ (a), $LiYF_4:18\% Yb^{3+}$, $3\% Er^{3+}$, $0.2\% Ho^{3+}$ (b) and $LiYF_4:18\% Yb^{3+}$, $3\% Er^{3+}$, $2\% Ce^{3+}$ (c)

Figure S14 (a) LIR repeatability in 5 heating-cooling cycles. (b) LIR values were measured 50 times continuously at 333 K.

Figure S15 Schematic diagram of the experimental equipment for temperature sensing measurements.

Table S1:

The decomposition of each J in the C₄ point group (Γ_j^{\pm} is the irreducible representation of $D_{J^{\pm}}, (\overline{\Gamma_i + \Gamma_j})$ represents two one-dimensional irreducible representations):

D_0^\pm	Γ_1
D_1^{\pm}	$\Gamma_1 + (\Gamma_3 + \Gamma_4)$
D_2^{\pm}	$\Gamma_1 + 2\Gamma_2 + (\overline{\Gamma_3 + \Gamma_4})$
D_3^{\pm}	$\Gamma_1 + 2\Gamma_2 + 2(\overline{\Gamma_3 + \Gamma_4})$
D_4^\pm	$3\Gamma_1 + 2\Gamma_2 + 2(\overline{\Gamma_3 + \Gamma_4})$
D_5^{\pm}	$3\Gamma_1 + 2\Gamma_2 + 3(\overline{\Gamma_3 + \Gamma_4})$
D_6^{\pm}	$3\Gamma_1 + 4\Gamma_2 + 3(\overline{\Gamma_3 + \Gamma_4})$
D_7^\pm	$3\Gamma_1 + 4\Gamma_2 + 4(\overline{\Gamma_3 + \Gamma_4})$
${\sf D_8^\pm}$	$5\Gamma_1 + 4\Gamma_2 + 4(\overline{\Gamma_3 + \Gamma_4})$
$D_{1/2}^{\pm}$	$(\Gamma_5 + \Gamma_6)$

$$D_{3/2^{\pm}} \qquad \qquad \left(\overline{\Gamma_5 + \Gamma_6} \right)_+ (\overline{\Gamma_7 + \Gamma_8}) \\ (\overline{\Gamma_5 + \Gamma_6})_+ (\overline{\Gamma_7 + \Gamma_8}) \\ (\overline{\Gamma_7 + \Gamma_8})_+ ($$

$$D_{5/2} = (\Gamma_5 + \Gamma_6)_{+2}(\Gamma_7 + \Gamma_8)$$

$$2(\overline{\Gamma_5 + \Gamma_6})_{+2}(\overline{\Gamma_7 + \Gamma_8})$$

$$D_{11/2^{\pm}} = 3(\overline{\Gamma_5 + \Gamma_6})_{+3}(\overline{\Gamma_7 + \Gamma_8})$$
$$3(\overline{\Gamma_5 + \Gamma_6})_{+4}(\overline{\Gamma_7 + \Gamma_8})$$

$$D_{15/2^{\pm}}$$

$$D_{17/2^{\pm}}$$

Compatibility relationship between group C_{4h} and group C₄:

C_{4h}	Γ_1^+	Γ_2^+	Γ_3^+	Γ_4^+	Γ_1^-	Γ_2^-	Γ3-	Γ_4^-	Γ_5^+	Γ_6^+	Γ_7^+	Γ_8^+	Γ_5^-	Γ ₆ -	Γ ₇ -	Γ_8^-
C ₄	Γ_1	Γ_2	Γ_3	Γ_4	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6	Γ_7	Γ_8	Γ_5	Γ_6	Γ_7	Γ_8

Number of energy level splits of J energy levels in the point group:

J	0	1	2	3	4	5	6	7	8	1/2	3/2	5/2	7/2	9/2	11/2	13/2	15/2	17/2
C ₄	1	n	4	5	7	0	10	11	12	1	2	2	Л	5	6	7	o	0
C_{4h}		2	4	5	/	0	10	11	15	1	Ζ	3	4	5	0	/	0	9