From $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ to $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$: the first tellurite bromide exhibiting an SHG response and mid-IR transparency

Peng-Fei Li ${ }^{\text {a,b }}$, Chun-Li Hu, ${ }^{\text {a }}$ Bing-Xuan Li, ${ }^{\text {a }}$ Jiang-Gao Mao ${ }^{\text {a,b }}$, Fang Kong ${ }^{*, a, b}$
${ }^{\text {a }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
${ }^{\mathrm{b}}$ University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
*Corresponding Authors: kongfang@fjirsm.ac.cn

Supporting Information

Experimental Section 2
Computational Method 5
Table S1. Summary of crystal data and structural refinements for $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$. 6
Table S2. Calculated bond valences of the $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ 7
Table S3. Calculation of the dipole moments of some building blocks in $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{D}=$ Debyes $)$ 9
Table S4. The dipole moments of the polar units and the unit cell of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Cl}_{4}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{D}=$ Debyes) 10
Table S5. State energies (eV) of the lowest conduction band $(\mathrm{L}-\mathrm{CB})$ and the highest valence band $(\mathrm{H}-\mathrm{VB})$ of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ 12
Figure S1. Simulated and experimental powder X-ray diffractometer patterns of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$(a), $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ (b) and Rietveld refinement plots of the powder XRD patterns for $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (c).13
Figure S2. The $\left[\mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{4}\right]^{6-}$ unit (a), $\mathrm{Pb}_{4} \mathrm{O}_{12} \mathrm{Br}_{4}$ tetramers (b), 3D network with four-membered polyhedralring (4-MR) tunnels (c) and the 1D chain formed by the $\left[\mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{4}\right]^{6-}$ units and $\mathrm{Pb}_{4} \mathrm{O}_{12} \mathrm{Br}_{4}$ tetramers(d).. 14
Figure S3. The lead bromide 3D skeletons (a), the 1D lead bromoxide 4-MR structures (b) and the lead tellurite chain (c) of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ 15
Figure S4. TGA and DSC/DTA results of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}(\mathrm{a})$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ (b) 16
Figure S5. UV-vis-NIR diffuse-reflectance spectra of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a) and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ (b) 17
Figure S6. IR spectra of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}(\mathrm{a})$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{~b})$ 18
Figure S7. Band structures of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a) and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{~b})$ 19
Figure S8. Calculated refractive indices and birefringence of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a) 20
Figure S9. Total and partial density of states of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$. 21
References 22

Experimental Section

Reagents and Instruments

All the chemicals were obtained from commercial sources and used without further purification: SeO_{2} (Adamas-beta, 99.999%), CdO (Adamas-beta, $99.0 \%+$), TeO_{2} (Adamasbeta, 99.99%), PbBr_{2} (Adamas-beta, 99.9%) and HBr (Adamas-beta, 48\%).

Powder X-ray diffraction (PXRD) patterns of the two compounds were collected on the Miniflex 600 powder X-ray diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54186 \AA$) at room temperature in the angular range of $2 \theta=10-70^{\circ}$ with a scan step size of 0.02°.

Microprobe elemental analysis was carried out with the aid of a field-emission scanning electron microscope (JSM6700F) outfitted with an energy-dispersive X-ray spectroscope (Oxford INCA).

IR spectra were carried out on a Magna 750 FT-IR spectrometer using air as background in the range of $4000-400 \mathrm{~cm}^{-1}$ with a resolution of $2 \mathrm{~cm}^{-1}$ at room temperature. The samples used were polycrystalline powders of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$.

The UV-vis-NIR spectra were obtained at 2000-200 nm by a PerkinElmer Lambda 900 spectrophotometer using BaSO_{4} as the reference, and the reflection spectra were converted into an absorption spectrum using the Kubelka-Munk function. Absorption data was calculated from the diffuse reflection data by the Kubelka-Munk function: $\alpha / \mathrm{S}=(1-\mathrm{R})^{2} / 2 \mathrm{R}$, where α and S represent the absorption coefficient and the scattering coefficient, respectively ${ }^{1}$. The band gap value can be given by extrapolating the absorption edge to the baseline in the α / S vs. energy graph.

Thermogravimetric analyses (TGA) were measured by Netzsch STA 499C installation. The samples about $3.0-5.0 \mathrm{mg}$ were placed in alumina crucibles and heated in $20-1200^{\circ} \mathrm{C}$ at a rate of $15^{\circ} \mathrm{C} /$ min under N_{2} atmosphere.

Powder SHG measurements were conducted using a modified method of Kurtz and Perry ${ }^{2}$. Irradiation laser $(\lambda=1064 \mathrm{~nm})$ is generated by a Nd:YAG solid-state laser equipped with a Q switch. The pure crystal samples of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ was sieved according to $150-210 \mu \mathrm{~m}$ particle
size range. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (KDP) samples in the same size range were also be prepared and used as reference. The oscilloscope traces of SHG signals for $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ and KDP samples in the particle size range ($150-210 \mu \mathrm{~m}$) were recorded.

The LIDT measurements of the $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ crystal samples was performed by a Q switched pulsed laser. The particle size range of the tested sample was $150-210 \mu \mathrm{~m}$, the laser wavelength was 1064 nm , the pulse duration was 10 ns , the pulse frequency was 1 Hz , and the laser spot area focused on the sample was $1.54 \mathrm{~mm}^{2}$. The energy of the laser emission was gradually increased during the measurement, and the LIDT of the sample was determined when it turned black under the laser.

Single-crystal X-ray diffraction data of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ was obtained on Agilent Technologies SuperNova dual-wavelength CCD diffractometer with a graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at room temperature. Data reduction and cell refinement and were performed with CrysAlisPro. The structure was solved by the direct methods and refined by full-matrix least-squares fitting on F^{2} using Olex2 crystallographic software package ${ }^{3,4}$. All the atoms were refined with anisotropic thermal parameters and finally converged for $F_{0}{ }^{2} \geq$ $2 \sigma\left(F_{0}^{2}\right)$. The structural data were also checked for possible missing symmetry with the program PLATON, and no higher symmetry was found ${ }^{5}$. The detailed crystallographic data for the two compounds were given in Table S1. The bond lengths were listed in Table S2.

Syntheses

$\mathbf{C d P b}_{\mathbf{8}}\left(\mathrm{SeO}_{3}\right)_{4} \mathbf{B r}_{10}$ was obtained by mild hydrothermal reactions. A mixture of $\mathrm{SeO}_{2}(333 \mathrm{mg}$, 3 mmol), CdO ($128 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{PbBr}_{2}(551 \mathrm{mg}, 1.5 \mathrm{mmol}), 0.25 \mathrm{ml} \mathrm{HBr}$ and $4 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were sealed in an autoclave containing Teflon liner equipped (23 ml), which were heated at $225{ }^{\circ} \mathrm{C}$ for 4320 minutes, and then cooled to room temperature at a rate of $1.5^{\circ} \mathrm{C} / \mathrm{h}$. The products were separated by vacuum filtration, washed with alcohol and dried in air at room temperature. Transparent crystals $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ was obtained in yield of about 56% (based on Se) respectively. Its purity was confirmed by X-ray diffraction (XRD) and Rietveld refinement (Fig. S1).
$\mathbf{P b}_{\mathbf{3}}\left(\mathbf{T e O}_{3}\right) \mathbf{B r}_{4}$ was obtained by mild hydrothermal reactions. A mixture of $\mathrm{TeO}_{2}(479 \mathrm{mg}, 3$ $\mathrm{mmol}), \mathrm{PbBr}_{2}(1101 \mathrm{mg}, 3 \mathrm{mmol})$ and $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were sealed in an autoclave containing Teflon
liner equipped (23 ml), which were heated at $230^{\circ} \mathrm{C}$ for 5760 minutes, and then cooled to room temperature at a rate of $3^{\circ} \mathrm{C} / \mathrm{h}$. The products were separated by vacuum filtration, washed with alcohol and dried in air at room temperature. Transparent rod-shaped crystals $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ was obtained in yield of about 11% (based on Se) respectively. Its purity was confirmed by Xray diffraction (XRD) studies (Fig. S1).

Computational Method

Single-crystal structural data of compounds $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ were used for the theoretical calculations. The electronic structures were performed using a plane-wave basis set and pseudo-potentials within density functional theory (DFT) implemented in the totalenergy code CASTEP ${ }^{6}$. For the exchange and correlation functional, we chose Perdew-BurkeErnzerhof (PBE) in the generalized gradient approximation (GGA) ${ }^{7}$. The interactions between the ionic cores and the electrons were described by the ultrasoft pseudopotential ${ }^{8}$. The following valence-electron configurations were considered in the computation: $\mathrm{Se}-4 \mathrm{~s}^{2} 4 \mathrm{p}^{4}, \mathrm{Te}-$ $5 s^{2} 5 p^{4}, \mathrm{Br}-4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}, \mathrm{Cd}-4 \mathrm{~d}^{10} 4 \mathrm{p}^{2} 5 \mathrm{~s}^{2}, \mathrm{~Pb}-5 \mathrm{~d}^{10} 6 \mathrm{p}^{2} 6 \mathrm{~s}^{2}$ and $\mathrm{O}-2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$. The numbers of plane waves included in the basis sets were determined by cutoff energy of 820 eV for $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$. The numerical integration of the Brillouin zone was performed using Monkhorst-Pack k-point sampling of $1 \times 3 \times 1$ and $3 \times 2 \times 3$. The other parameters and convergent criteria were the default values of CASTEP code.

The calculations of linear optical properties in terms of the complex dielectric function $\varepsilon(\omega)$ $=\varepsilon_{1}(\omega)+\mathrm{i} \varepsilon_{2}(\omega)$ were made. The imaginary part of the dielectric function $\varepsilon 2$ was given in the following equation:
$\varepsilon^{\mathrm{i}_{2}(\omega)}=\frac{8 \pi^{2} h^{2} e^{2}}{\left(m^{2} V\right)} \sum_{k} \sum_{c v}\left(f_{c}-f_{v}\right) \frac{p_{c v}^{i}(k) p_{c v}^{j}(k)}{E_{v c}^{2}} \delta\left[E_{c(\mathrm{k})-}-E_{v(\mathrm{k})-\mathrm{h} \omega]}\right.$
The f_{c} and f_{v} represent the Fermi distribution functions of the conduction and valence band. The term $p_{c v}^{i}(k)$ denotes the momentum matrix element transition from the energy level c of the conduction band to the level v of the valence band at the k th point in the Brillouin zone (BZ), and V is the volume of the unit cell9-11.

The real part $\varepsilon_{1}(\omega)$ of the dielectric function $\varepsilon(\omega)$ follows from the Kramer-Kronig relationship. All the other optical constants may be derived from $\varepsilon_{1}(\omega)$ and $\varepsilon_{2}(\omega)$. For example, the refractive index $n(\omega)$ can be calculated using the following expression ${ }^{12}$:
$\mathrm{n}(\omega)=\left(\frac{1}{\sqrt{2}}^{2}\left[\sqrt{\varepsilon_{1}^{2}(\omega)+\varepsilon_{2}^{2}(\omega)}+\varepsilon_{1}(\omega)\right]^{1 / 2}\right.$

Table S1. Summary of crystal data and structural refinements for $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$.

molecular formula	$\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$	$\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$
Formula Weight	3076.86	1116.81
Crystal system	monoclinic	orthorhombic
Space group	C2/c	$P n a 1_{1}$
Temperature(K)	292.31(10)	293(2)
$F(000)$	5144.0	1848.0
a/ \AA	17.9188(17)	7.6928(2)
b/A	9.6194(9)	16.7016(4)
c / \AA	17.9097(17)	8.6092(2)
$\alpha(\mathrm{deg})$	90	90
β (deg)	92.999(9)	90
$\gamma(\mathrm{deg})$	90	90
V / \AA^{3}	3082.8(5)	1106.13(5)
Z	4	4
$\mathrm{Dc}\left(\mathrm{g} . \mathrm{cm}^{-3}\right)$	6.629	6.706
Flack	/	0.013(12)
GOF on F^{2}	1.129	1.059
$\mathrm{R}_{1}, \quad \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]^{a}$	$\mathrm{R}_{1}=0.0406, \mathrm{wR}_{2}=0.0790$	$\mathrm{R}_{1}=0.0286, \mathrm{wR}_{2}=0.0696$
R_{1}, $\mathrm{wR}_{2}\left(\right.$ all data) ${ }^{a}$	$\mathrm{R}_{1}=0.0554, \mathrm{wR}_{2}=0.0846$	$\mathrm{R}_{1}=0.0309, \mathrm{wR}_{2}=0.0706$
${ }^{a} R_{1}=\sum\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| \sum\left\|F_{o}\right\|, w R_{2}=\left\{\sum \mathrm{w}\left[\left(F_{o}\right)^{2}-\left(F_{c}\right)^{2}\right]^{2} / \sum \mathrm{w}\left[\left(F_{o}\right)^{2}\right]^{2}\right\}^{1 / 2}$		

Table S2. Calculated bond valences of the $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$.

Compound	Bond	Bond	Bond-valence	BVS
		lengths		
$\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$	Se1-O1	1.702	1.343	3.922
	Se1-O2	1.736	1.225	
	Se1-O3	1.699	1.354	
	Se2-O4	1.692	1.379	4.036
	Se2-O5	1.705	1.332	
	Se2-O6	1.707	1.325	
	$\mathrm{Pb} 1-\mathrm{Br} 3 \# 1$	3.193	0.224	$\begin{aligned} & 1.492 \\ & 1.885 \end{aligned}$
	$\mathrm{Pb} 1-\mathrm{O} 1 \# 2$	2.611	0.260	
	$\mathrm{Pb} 1-\mathrm{O} 1 \# 3$	2.659	0.228	
	$\mathrm{Pb} 1-\mathrm{O} 2 \# 3$	2.613	0.258	
	$\mathrm{Pb} 1-\mathrm{O} 3 \# 2$	2.698	0.205	
	$\mathrm{Pb} 1-\mathrm{O} 4$	2.537	0.317	
	Pb1-Br4	3.384	0.134	
	Pb1-Br5	3.347	0.148	
	Pb1-Br5	3.454	0.111	
	$\mathrm{Pb} 2-\mathrm{Br} 1$ \#4	3.121	0.304	$\begin{aligned} & 1.515 \\ & 1.926 \end{aligned}$
	$\mathrm{Pb} 2-\mathrm{O} 1 \# 2$	2.606	0.263	
	Pb2-O4\#5	2.694	0.207	
	$\mathrm{Pb} 2-\mathrm{O} 4$	2.641	0.239	
	$\mathrm{Pb} 2-\mathrm{O} 5$	2.660	0.227	
	Pb2-O6\#5	2.590	0.275	
	Pb2-Br1	3.35	0.147	
	$\mathrm{Pb} 2-\mathrm{Br} 2$	3.302	0.167	
	$\mathrm{Pb} 2-\mathrm{Br} 3$	3.502	0.097	
	$\mathrm{Pb} 3-\mathrm{Br} 1$	3.106	0.284	2.039
	$\mathrm{Pb} 3-\mathrm{Br} 2$	3.022	0.356	
	$\mathrm{Pb} 3-\mathrm{Br} 3$	3.148	0.253	
	$\mathrm{Pb} 3-\mathrm{Br} 3 \# 6$	3.155	0.249	
	Pb3-Br4	3.113	0.278	
	$\mathrm{Pb} 3-\mathrm{Br} 5 \# 5$	3.162	0.244	
	$\mathrm{Pb} 3-\mathrm{O} 3$	2.729	0.189	
	$\mathrm{Pb} 3-\mathrm{O} 5$	2.734	0.186	
	$\mathrm{Pb} 4-\mathrm{Br} 1$	3.178	0.234	$\begin{aligned} & 1.553 \\ & 1.982 \end{aligned}$
	Pb4-Br4\#7	3.130	0.266	
	$\mathrm{Pb} 4-\mathrm{Br} 5$	3.067	0.315	
	$\mathrm{Pb} 4-\mathrm{O} 2$	2.534	0.320	
	Pb4-O6\#5	2.435	0.418	

	$\mathrm{Pb} 4-\mathrm{Br} 2$	3.404	0.172	
	$\mathrm{Pb} 4-\mathrm{Br} 2$	3.502	0.097	
	Pb4-Br4	3.317	0.160	
	Cd1-O2	2.617	0.146	
	Cd1-O2\#5	2.617	0.146	
	Cd1-O3	2.296	0.347	
	Cd1-O3\#5	2.296	0.347	, 74
	Cd1-O5	2.263	0.379	
	Cd1-O5\#5	2.263	0.379	
	Te1-O1	1.866	1.350	
	Te1-O2	1.891	1.262	3.984
	Te1-O3	1.860	1.372	
	$\mathrm{Pb} 1-\mathrm{Br} 1$	2.942	0.442	
	$\mathrm{Pb} 1-\mathrm{Br} 2$	3.131	0.265	
	$\mathrm{Pb} 1-\mathrm{Br} 3 \# 1$	3.189	0.227	
	Pb1-O1\#1	2.394	0.467	$\begin{array}{r} .797 \\ 967 \end{array}$
	$\mathrm{Pb} 1-\mathrm{O} 2$	2.455	0.396	
	$\mathrm{Pb} 1-\mathrm{Br} 2$	3.282	0.176	
	$\mathrm{Pb} 1-\mathrm{Br} 3$	3.297	0.169	
	$\mathrm{Pb} 2-\mathrm{Br} 2$	3.100	0.288	
	$\mathrm{Pb} 2-\mathrm{Br} 2 \# 3$	3.179	0.233	
(TeO_{3}) Br_{4}	Pb2-Br3\#3	3.195	0.223	
	$\mathrm{Pb} 2-\mathrm{Br} 3$	3.161	0.245	1.844
	$\mathrm{Pb} 2-\mathrm{Br} 4$	2.938	0.447	
	$\mathrm{Pb} 2-\mathrm{O} 3$	2.444	0.408	
	$\mathrm{Pb} 2-\mathrm{O} 2$	2.966	0.099	
	Pb3-Br1\#4	3.030	0.349	
	Pb3-Br3\#3	3.230	0.203	
	Pb3-O1\#4	2.581	0.282	
	Pb3-O2\#4	2.543	0.312	$\begin{aligned} & 1.640 \\ & 1048 \end{aligned}$
	Pb3-O3	2.373	0.494	
	Pb3-Br4	3.256	0.189	
	Pb3-Br4	3.427	0.119	

Green font: Longer secondary bonds are considered.
Symmetry transformations used to generate equivalent atoms:
For $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$: \#1 X,1-Y,1/2+Z; \#2 +X,1+Y,+Z; \#3 1-X,1+Y,3/2-Z; \#4 1-X,1-Y,1-Z; \#5 1-X,+Y,3/2-Z; \#6 3/2-X,1/2-Y,1-Z; \#7 -1/2+X,1/2+Y,+Z
For $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}: ~ \# 1+\mathrm{X},+\mathrm{Y},-1+\mathrm{Z}$; \#2 1-X,1-Y,-1/2+Z; \#3 -1/2+X,1/2-Y,+Z; \#4 1-X,1Y,1/2+Z; \#5 +X,+Y,1+Z;\#6 1/2+X,1/2-Y,+Z

Table S3. Calculation of the dipole moments of some building blocks in $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{D}=$ Debyes $)$.

$\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$					
Polar unit		Dipole moment (D)			
Building Blocks	total magnitude	total magnitude	x- component	y component	Zcomponent
	$\mathrm{Se}(1) \mathrm{O}_{3}$	10.223	-0.745	0.644	10.176
	$\mathrm{Se}(1) \mathrm{O}_{3}$	10.223	0.745	0.644	-10.176
	$\mathrm{Se}(2) \mathrm{O}_{3}$	10.414	-10.344	-0.211	1.189
	$\mathrm{Se}(2) \mathrm{O}_{3}$	10.414	10.344	-0.211	-1.189
	Net dipole moment of $\left(\mathrm{SeO}_{3}\right)_{4}$	0.866	0	0.866	0
	$\mathrm{Cd}(1) \mathrm{O}_{6}$	5.245	0.000	5.245	0.000
	Net dipole moment of $\mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{4}$	3.597	0	3.597	0
	$\mathrm{Cd}(1) \mathrm{O}_{6}$	4.379	0.000	4.379	0.000
	$\mathrm{Pb}(3) \mathrm{O}_{2} \mathrm{Br}_{6}$	4.417	3.364	-0.757	-2.760
	$\mathrm{Pb}(3) \mathrm{O}_{2} \mathrm{Br}_{6}$	4.417	-3.364	-0.757	2.760
	$\mathrm{Pb}(4) \mathrm{O}_{2} \mathrm{Br}_{3}$	14.014	3.370	-6.258	12.078
	$\mathrm{Pb}(4) \mathrm{O}_{2} \mathrm{Br}_{3}$	14.014	-3.370	-6.259	-12.078
	Net dipole moment of $\mathrm{CdPb}_{4} \mathrm{O}_{6} \mathrm{Br}_{14}$	9.652	0.000	-9.652	0.000
	$\mathrm{Pb}(1) \mathrm{O}_{5} \mathrm{Br}$	13.556	10.066	-2.575	-8.708
	$\mathrm{Pb}(1) \mathrm{O}_{5} \mathrm{Br}$	13.556	-10.066	-2.575	8.708
	$\mathrm{Pb}(2) \mathrm{O}_{5} \mathrm{Br}$	4.311	0.377	3.130	-2.941
	$\mathrm{Pb}(2) \mathrm{O}_{5} \mathrm{Br}$	4.311	-0.377	3.130	2.941
	Net dipole moment of $\mathrm{Pb}_{4} \mathrm{O}_{12} \mathrm{Br}_{4}$	6.260	0.000	6.259	0.000
$\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$					
	$\mathrm{Te}(1) \mathrm{O}_{3}$	11.884	10.499	-0.433	5.550
	$\mathrm{Te}(1) \mathrm{O}_{3}$	11.884	-10.499	0.432	5.552
	Net dipole moment of $\left(\mathrm{TeO}_{3}\right)_{2}$	11.10	0	0	11.102
	$\mathrm{Pb}(1) \mathrm{O}_{2} \mathrm{Br}_{5}$	6.181	-4.857	3.802	-0.391
	$\mathrm{Pb}(1) \mathrm{O}_{2} \mathrm{Br}_{5}$	6.181	4.857	-3.802	-0.391
	$\mathrm{Pb}(2) \mathrm{OBr}_{5}$	4.703	2.590	-3.913	0.312
	$\mathrm{Pb}(2) \mathrm{OBr}_{5}$	4.703	-2.590	3.913	0.312
	$\mathrm{Pb}(3) \mathrm{O}_{3} \mathrm{Br}_{4}$	8.052	-0.769	0.667	-7.987
	$\mathrm{Pb}(3) \mathrm{O}_{3} \mathrm{Br}_{4}$	8.052	0.769	-0.667	-7.987
	Net dipole moment of this unit	16.133	0	0	-16.133

Table S4. The dipole moments of the polar units and the unit cell of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Cl}_{4}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{D}=$ Debyes $)$.

$\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Cl}_{4}$				
Polar unit	Dipole moment (D)			
	total magnitude	x-component	y-component	z-component
$\mathrm{Te}(1) \mathrm{O}_{3}$	12.833	11.353	0.056	5.982
	12.824	11.344	-0.056	5.981
	12.822	-11.343	0.0564	5.979
	12.832	-11.353	-0.056	5.982
Net dipole moment of $\mathrm{Te}(1) \mathrm{O}_{3}$	23.925	0.001	0.001	23.925
$\mathrm{Pb}(1) \mathrm{O}_{3} \mathrm{Cl}_{4}$	9.509	-5.089	1.093	-7.957
	9.508	5.089	1.092	-7.957
	9.509	5.089	-1.094	-7.958
	9.509	-5.089	-1.094	-7.958
Net dipole moment of $\mathrm{Pb}(1) \mathrm{O}_{3} \mathrm{Cl}_{4}$	31.831	0	-0.003	-31.831
$\mathrm{Pb}(2) \mathrm{OCl}_{5}$	2.098	2.097	-0.030	-0.054
	2.098	2.097	0.030	-0.054
	2.098	-2.097	0.030	-0.054
	2.098	-2.097	-0.030	-0.054
Net dipole moment of $\mathrm{Pb}(2) \mathrm{OCl}_{5}$	0.218	0	0	-0.218
$\mathrm{Pb}(3) \mathrm{O}_{2} \mathrm{Cl}_{5}$	5.135	-4.585	2.308	-0.138
	5.135	-4.585	-2.308	-0.138
	5.136	4.586	-2.308	-0.140
	5.136	4.586	2.308	-0.140
Net dipole moment of $\mathrm{Pb}(3) \mathrm{O}_{2} \mathrm{Cl}_{5}$	0.556	0.002	0	-0.556
Net dipole moment (a unit cell)	8.680	-0.418	-0.002	-8.722
$\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$				
Polar unit	Dipole moment (D)			
	total magnitude	x-component	y-component	z-component
$\mathrm{Te}(1) \mathrm{O}_{3}$	11.888	10.503	0.431	5.552
	11.884	10.499	-0.433	5.550
	11.884	-10.499	0.432	5.552
	11.889	-10.503	-0.431	5.554
Net dipole moment of $\mathrm{Te}(1) \mathrm{O}_{3}$	22.208	0	0	22.208
$\mathrm{Pb}(1) \mathrm{O}_{2} \mathrm{Br}_{5}$	6.181	4.857	3.802	-0.391
	6.181	4.857	-3.802	-0.391
	6.181	-4.857	3.802	-0.391
	6.181	-4.857	-3.802	-0.391
Net dipole moment of $\mathrm{Pb}(1) \mathrm{O}_{2} \mathrm{Br}_{5}$	1.565	0	0	-1.565
$\mathrm{Pb}(2) \mathrm{OBr}_{5}$	4.701	2.590	3.911	0.312
	4.701	2.590	-3.911	0.312

	4.701	-2.590	3.911	0.312
	4.701	-2.590	-3.911	0.312
	1.248	0	0	1.248
	8.053	-0.772	-0.665	-7.988
	8.053	-0.772	0.665	-7.988
	8.053	0.772	-0.665	-7.988
	8.053	0.772	0.665	-7.988
Net dipole moment of $\mathrm{Pb}(3) \mathrm{O}_{3} \mathrm{Br}_{4}$	32.271	0	0	-32.271
Net dipole moment $($ a unit cell $)$	10.062	0	0	-10.062

Table S5. State energies (eV) of the lowest conduction band ($\mathrm{L}-\mathrm{CB}$) and the highest valence band $(\mathrm{H}-\mathrm{VB})$ of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$.

Compound	k-point	L-CB	H-VB
$\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$	Z (0.000, 0.000, 0.500)	3.011678	-0.18565
	G (0.000, 0.000, 0.000)	2.954599	-0.15266
	$\mathrm{Y}(0.000,0.500,0.000)$	2.967506	-0.00769
	A (-0.500, 0.500, 0.000)	3.129502	-0.00064
	B ($-0.500,0.000,0.000$)	3.058268	-0.21462
	D (-0.500, 0.000, 0.500)	3.045194	-0.24492
	E (-0.500, 0.500, 0.500)	3.083478	0
	$\mathrm{C}(0.000,0.500,0.500)$	3.133588	-0.03147
$\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$	G (0.000, 0.000, 0.000)	3.134203	0
	$\mathrm{Z}(0.000,0.000,0.500)$	3.401155	-0.11537
	T (-0.500, 0.000, 0.500)	3.298867	-0.11899
	Y (-0.500, 0.000, 0.000)	3.458111	-0.02856
	S (-0.500, 0.500, 0.000)	3.532037	-0.0913
	$\mathrm{X}(0.000,0.500,0.000)$	3.149716	-0.04157
	$\mathrm{U}(0.000,0.500,0.500)$	3.438794	-0.11292
	R (-0.500, 0.500, 0.500)	3.295515	-0.07356

Figure S1. Simulated and experimental powder X-ray diffractometer patterns of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}(\mathrm{a}), \mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ (b) and Rietveld refinement plots of the powder XRD patterns for $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}(\mathrm{c})$.

Figure S2. The $\left[\mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{4}\right]^{6-}$ unit (a), $\mathrm{Pb}_{4} \mathrm{O}_{12} \mathrm{Br}_{4}$ tetramers (b), 3D network with fourmembered polyhedral ring (4-MR) tunnels (c) and the 1 D chain formed by the $\left[\mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{4}\right]^{6-}$ units and $\mathrm{Pb}_{4} \mathrm{O}_{12} \mathrm{Br}_{4}$ tetramers(d).

(a)

(b)

(c)

Figure S3. The lead bromide 3D skeletons (a), the 1D lead bromoxide 4-MR structures (b) and the lead tellurite chain (c) of $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$.

Figure S4. TGA and DSC/DTA results of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a) and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}$ (b).

Figure S5. UV-vis-NIR diffuse-reflectance spectra of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a) and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{~b})$.

(a)

(b)

Figure S6. IR spectra of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}(\mathrm{a})$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}(\mathrm{~b})$.

Figure S7. Band structures of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}($ a $)$ and $\mathrm{Pb}_{3}\left(\mathrm{TeO}_{3}\right) \mathrm{Br}_{4}($ b $)$.

Figure S8. Calculated refractive indices and birefringence of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$ (a).

Figure S9. Total and partial density of states of $\mathrm{CdPb}_{8}\left(\mathrm{SeO}_{3}\right)_{4} \mathrm{Br}_{10}$.

References

1. P. Kubelka and F. Munk, An Article on Optics of Paint Layers, Technol. Physical 1931, 12, 259-274.
2. S. K. Kurtz and T. T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials., J. Appl. Phys., 1968, 39, 3798-3813.
3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Cryst., 2009, 42, 339-341.
4. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst., 2015, C71, 3-8.
5. A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Cryst., 2003, 36, 7-13.
6. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, Phys-Condens Mat., 2002, 14, 2717-2744.
7. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum. Chem., 2000, 77, 895910.
8. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865-3868.
9. C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis, Phys. Rev. B, 1995, 52, 14636-14645.
10. J. Lin, M.-H. Lee, Z.-P. Liu, C. Chen and C. J. Pickard, Mechanism for linear and nonlinear optical effects in $\beta-\mathrm{BaB}_{2} \mathrm{O}_{4}$ crystals, Phys. Rev. B, 1999, 60, 13380-13389.
11. S. N. Rashkeev, W. R. L. Lambrecht and B. Segall, Efficientab initiomethod for the calculation of frequency-dependent second-order optical response in semiconductors, Phys. Rev. B, 1998, 57, 3905-3919.
12. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, 41, 7892-7895.
