From CdPb₈(SeO₃)₄Br₁₀ to Pb₃(TeO₃)Br₄: the first tellurite bromide exhibiting an SHG response and mid-IR transparency

Peng-Fei Li^{a,b}, Chun-Li Hu,^a Bing-Xuan Li,^a Jiang-Gao Mao^{a,b}, Fang Kong^{*,a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure

of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding Authors: kongfang@fjirsm.ac.cn

Supporting Information

Experimental Section
Computational Method5
$\textbf{Table S1. Summary of crystal data and structural refinements for CdPb_8 (SeO_3)_4 Br_{10} \text{ and } Pb_3 (TeO_3) Br_4 6$
Table S2. Calculated bond valences of the $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$ 7
Table S3. Calculation of the dipole moments of some building blocks in $CdPb_8(SeO_3)_4Br_{10}$ and
$Pb_3(TeO_3)Br_4$ (D = Debyes)
Table S4. The dipole moments of the polar units and the unit cell of $Pb_3(TeO_3)Cl_4$ and $Pb_3(TeO_3)Br_4$ (D =
Debyes)
Table S5. State energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB)
of $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$ 12
Figure S1. Simulated and experimental powder X-ray diffractometer patterns of CdPb ₈ (SeO ₃) ₄ Br ₁₀
$(a), Pb_{3}(TeO_{3})Br_{4}(b) \ and \ Rietveld \ refinement \ plots \ of \ the \ powder \ XRD \ patterns \ for \ CdPb_{8}(SeO_{3})_{4}Br_{10}(c).$
Figure S2. The $[Cd(SeO_3)_4]^{6-}$ unit (a), $Pb_4O_{12}Br_4$ tetramers (b), 3D network with four-membered polyhedral
ring (4-MR) tunnels (c) and the 1D chain formed by the $[Cd(SeO_3)_4]^{6-}$ units and $Pb_4O_{12}Br_4$ tetramers(d)14
Figure S3. The lead bromide 3D skeletons (a), the 1D lead bromoxide 4-MR structures (b) and the lead
tellurite chain (c) of Pb ₃ (TeO ₃)Br ₄ 15
Figure S4. TGA and DSC/DTA results of $CdPb_8(SeO_3)_4Br_{10}(a)$ and $Pb_3(TeO_3)Br_4(b)$ 16
Figure S5. UV-vis-NIR diffuse-reflectance spectra of CdPb ₈ (SeO ₃) ₄ Br ₁₀ (a) and Pb ₃ (TeO ₃)Br ₄ (b)17
Figure S6. IR spectra of $CdPb_8(SeO_3)_4Br_{10}(a)$ and $Pb_3(TeO_3)Br_4(b)$
Figure S7. Band structures of $CdPb_8(SeO_3)_4Br_{10}(a)$ and $Pb_3(TeO_3)Br_4(b)$ 19
Figure S8. Calculated refractive indices and birefringence of CdPb ₈ (SeO ₃) ₄ Br ₁₀ (a)20
Figure S9. Total and partial density of states of CdPb ₈ (SeO ₃) ₄ Br ₁₀ 21
References

Experimental Section

Reagents and Instruments

All the chemicals were obtained from commercial sources and used without further purification: SeO₂ (Adamas-beta, 99.999%), CdO (Adamas-beta, 99.0%+), TeO₂ (Adamas-beta, 99.99%), PbBr₂ (Adamas-beta, 99.9%) and HBr (Adamas-beta, 48%).

Powder X-ray diffraction (PXRD) patterns of the two compounds were collected on the Miniflex 600 powder X-ray diffractometer using Cu K α radiation ($\lambda = 1.54186$ Å) at room temperature in the angular range of $2\theta = 10-70^{\circ}$ with a scan step size of 0.02° .

Microprobe elemental analysis was carried out with the aid of a field-emission scanning electron microscope (JSM6700F) outfitted with an energy-dispersive X-ray spectroscope (Oxford INCA).

IR spectra were carried out on a Magna 750 FT-IR spectrometer using air as background in the range of 4000–400 cm⁻¹ with a resolution of 2 cm⁻¹ at room temperature. The samples used were polycrystalline powders of CdPb₈(SeO₃)₄Br₁₀ and Pb₃(TeO₃)Br₄.

The UV-vis-NIR spectra were obtained at 2000–200 nm by a PerkinElmer Lambda 900 spectrophotometer using BaSO₄ as the reference, and the reflection spectra were converted into an absorption spectrum using the Kubelka-Munk function. Absorption data was calculated from the diffuse reflection data by the Kubelka-Munk function: $\alpha/S = (1-R)^2/2R$, where α and S represent the absorption coefficient and the scattering coefficient, respectively¹. The band gap value can be given by extrapolating the absorption edge to the baseline in the α/S vs. energy graph.

Thermogravimetric analyses (TGA) were measured by Netzsch STA 499C installation. The samples about 3.0-5.0 mg were placed in alumina crucibles and heated in 20-1200 °C at a rate of 15 °C/min under N_2 atmosphere.

Powder SHG measurements were conducted using a modified method of Kurtz and Perry ². Irradiation laser ($\lambda = 1064$ nm) is generated by a Nd:YAG solid-state laser equipped with a Q switch. The pure crystal samples of Pb₃(TeO₃)Br₄ was sieved according to 150–210 µm particle size range. KH_2PO_4 (KDP) samples in the same size range were also be prepared and used as reference. The oscilloscope traces of SHG signals for $Pb_3(TeO_3)Br_4$ and KDP samples in the particle size range (150–210 µm) were recorded.

The LIDT measurements of the $Pb_3(TeO_3)Br_4$ crystal samples was performed by a Q-switched pulsed laser. The particle size range of the tested sample was 150–210 µm, the laser wavelength was 1064 nm, the pulse duration was 10 ns, the pulse frequency was 1 Hz, and the laser spot area focused on the sample was 1.54 mm². The energy of the laser emission was gradually increased during the measurement, and the LIDT of the sample was determined when it turned black under the laser.

Single-crystal X-ray diffraction data of Pb₃(TeO₃)Br₄ was obtained on Agilent Technologies SuperNova dual-wavelength CCD diffractometer with a graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Data reduction and cell refinement and were performed with *CrysAlisPro*. The structure was solved by the direct methods and refined by full-matrix least-squares fitting on F^2 using *Olex2* crystallographic software package^{3,4}. All the atoms were refined with anisotropic thermal parameters and finally converged for $F_0^2 \ge 2\sigma(F_0^2)$. The structural data were also checked for possible missing symmetry with the program *PLATON*, and no higher symmetry was found⁵. The detailed crystallographic data for the two compounds were given in Table S1. The bond lengths were listed in Table S2.

Syntheses

 $CdPb_8(SeO_3)_4Br_{10}$ was obtained by mild hydrothermal reactions. A mixture of SeO₂ (333 mg, 3 mmol), CdO (128 mg, 1 mmol), PbBr₂ (551 mg, 1.5 mmol), 0.25ml HBr and 4 ml H₂O were sealed in an autoclave containing Teflon liner equipped (23 ml), which were heated at 225 °C for 4320 minutes, and then cooled to room temperature at a rate of 1.5 °C/h. The products were separated by vacuum filtration, washed with alcohol and dried in air at room temperature. Transparent crystals CdPb₈(SeO₃)₄Br₁₀ was obtained in yield of about 56% (based on Se) respectively. Its purity was confirmed by X-ray diffraction (XRD) and Rietveld refinement (Fig. S1).

 $Pb_3(TeO_3)Br_4$ was obtained by mild hydrothermal reactions. A mixture of TeO₂ (479 mg, 3 mmol), PbBr₂ (1101 mg, 3 mmol) and 5 ml H₂O were sealed in an autoclave containing Teflon

liner equipped (23 ml), which were heated at 230 °C for 5760 minutes, and then cooled to room temperature at a rate of 3 °C/h. The products were separated by vacuum filtration, washed with alcohol and dried in air at room temperature. Transparent rod-shaped crystals Pb₃(TeO₃)Br₄ was obtained in yield of about 11% (based on Se) respectively. Its purity was confirmed by X-ray diffraction (XRD) studies (Fig. S1).

Computational Method

Single-crystal structural data of compounds CdPb₈(SeO₃)₄Br₁₀ and Pb₃(TeO₃)Br₄ were used for the theoretical calculations. The electronic structures were performed using a plane-wave basis set and pseudo-potentials within density functional theory (DFT) implemented in the totalenergy code CASTEP⁶. For the exchange and correlation functional, we chose Perdew–Burke– Ernzerhof (PBE) in the generalized gradient approximation (GGA)⁷. The interactions between the ionic cores and the electrons were described by the ultrasoft pseudopotential⁸. The following valence-electron configurations were considered in the computation: Se-4s²4p⁴, Te-5s²5p⁴, Br-4s²4p⁵, Cd-4d¹⁰4p²5s², Pb-5d¹⁰6p²6s² and O-2s²2p⁴. The numbers of plane waves included in the basis sets were determined by cutoff energy of 820 eV for CdPb₈(SeO₃)₄Br₁₀ and Pb₃(TeO₃)Br₄. The numerical integration of the Brillouin zone was performed using Monkhorst-Pack k-point sampling of 1 × 3 × 1 and 3 × 2 × 3. The other parameters and convergent criteria were the default values of CASTEP code.

The calculations of linear optical properties in terms of the complex dielectric function $\varepsilon(\omega)$ = $\varepsilon_1(\omega) + i\varepsilon_2(\omega)$ were made. The imaginary part of the dielectric function ε^2 was given in the following equation:

$$\sum_{\epsilon^{ij}_{2}(\omega)} = \frac{8\pi^{2}h^{2}e^{2}}{(m^{2}V)} \sum_{k} \sum_{cv} (f_{c} - f_{v}) \frac{p_{cv}^{i}(k)p_{cv}^{j}(k)}{E_{vc}^{2}} \delta^{[E_{c}(k) - E_{v}(k) - h\omega]}$$

The f_c and f_v represent the Fermi distribution functions of the conduction and valence band. The term $p_{cv}^{i}(k)$ denotes the momentum matrix element transition from the energy level c of the conduction band to the level v of the valence band at the *k*th point in the Brillouin zone (BZ), and *V* is the volume of the unit cell⁹⁻¹¹.

The real part $\varepsilon_1(\omega)$ of the dielectric function $\varepsilon(\omega)$ follows from the Kramer–Kronig relationship. All the other optical constants may be derived from $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$. For example, the refractive index $n(\omega)$ can be calculated using the following expression¹²:

$$\frac{1}{n(\omega)=(\sqrt{2})[\sqrt{\varepsilon_1^2(\omega)+\varepsilon_2^2(\omega)}+\varepsilon_1(\omega)]^{1/2}}$$

Table S1. Summary of crystal data and structural refinements for $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$.

molecular formula	CdPb ₈ (SeO ₃) ₄ Br ₁₀	Pb ₃ (TeO ₃)Br ₄		
Formula Weight	3076.86	1116.81		
Crystal system	monoclinic	orthorhombic		
Space group	C2/c	$Pna2_1$		
Temperature(K)	292.31(10)	293(2)		
F(000)	5144.0	1848.0		
a/Å	17.9188(17)	7.6928(2)		
b/Å	9.6194(9)	16.7016(4)		
c/Å	17.9097(17)	8.6092(2)		
a(deg)	90	90		
β(deg)	92.999(9)	90		
γ(deg)	90	90		
V/Å ³	3082.8(5)	1106.13(5)		
Ζ	4	4		
Dc(g.cm ⁻³)	6.629	6.706		
Flack	/	0.013(12)		
GOF on F ²	1.129	1.059		
R_1 , $wR_2[I > 2\sigma(I)]^a$	$R_1 = 0.0406, wR_2 = 0.0790$	$R_1 = 0.0286, wR_2 = 0.0696$		
R_1 , w R_2 (all data) ^{<i>a</i>}	$R_1 = 0.0554, wR_2 = 0.0846$	$R_1 = 0.0309, wR_2 = 0.0706$		
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} , wR_{2} = \{ \sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})^{2}]^{2} \}^{1/2}$				

Compound	Rond	Bond	Rond valence	DVS
	Donu	lengths	Donu-valence	DVS
	Se1-O1	1.702	1.343	
	Se1-O2	1.736	1.225	3.922
	Se1-O3	1.699	1.354	
	Se2-O4	1.692	1.379	
	Se2-O5	1.705	1.332	4.036
	Se2-06	1.707	1.325	
	Pb1-Br3#1	3.193	0.224	
	Pb1-O1#2	2.611	0.260]
	Pb1-O1#3	2.659	0.228]
	Pb1-O2#3	2.613	0.258	
	Pb1-O3#2	2.698	0.205	1.492
	Pb1-O4	2.537	0.317	1.885
	Pb1-Br4	3.384	0.134	1
	Pb1-Br5	3.347	0.148	1
	Pb1-Br5	3.454	0.111	1
	Pb2-Br1#4	3.121	0.304	
	Pb2-O1#2	2.606	0.263	1
	Pb2-O4#5	2.694	0.207	1
$CdPb_8(SeO_3)_4Br_{10}$	Pb2-O4	2.641	0.239	
	Pb2-O5	2.660	0.227	1.515
	Pb2-O6#5	2.590	0.275	1.920
	Pb2-Br1	3.35	0.147	
	Pb2-Br2	3.302	0.167	
	Pb2-Br3	3.502	0.097	1
	Pb3-Br1	3.106	0.284	
	Pb3-Br2	3.022	0.356	1
	Pb3-Br3	3.148	0.253	1
	Pb3-Br3#6	3.155	0.249	
	Pb3-Br4	3.113	0.278	2.039
	Pb3-Br5#5	3.162	0.244	1
	Pb3-O3	2.729	0.189	
	Pb3-O5	2.734	0.186	1
	Pb4-Br1	3.178	0.234	
	Pb4-Br4#7	3.130	0.266	1.550
	Pb4-Br5	3.067	0.315	1.553
	Pb4-O2	2.534	0.320	1.982
	Pb4-O6#5	2.435	0.418	1

Table S2. Calculated bond valences of the $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$.

	Pb4-Br2	3.404	0.172	
	Pb4-Br2	3.502	0.097	
	Pb4-Br4	3.317	0.160	
	Cd1-O2	2.617	0.146	
	Cd1-O2#5	2.617	0.146	
	Cd1-O3	2.296	0.347	1 744
	Cd1-O3#5	2.296	0.347	1./44
	Cd1-O5	2.263	0.379	
	Cd1-O5#5	2.263	0.379	
	Te1-O1	1.866	1.350	
	Te1-O2	1.891	1.262	3.984
	Te1-O3	1.860	1.372	
	Pb1-Br1	2.942	0.442	
	Pb1-Br2	3.131	0.265	
	Pb1-Br3#1	3.189	0.227	1 707
	Pb1-O1#1	2.394	0.467	1.797 1.967
	Pb1-O2	2.455	0.396	
	Pb1-Br2	3.282	0.176	
	Pb1-Br3	3.297	0.169	
	Pb2-Br2	3.100	0.288	
Ph (TeO)Dr	Pb2-Br2#3	3.179	0.233	
$PD_3(1eO_3)Br_4$	Pb2-Br3#3	3.195	0.223	1 0 4 4
	Pb2-Br3	3.161	0.245	1.844
	Pb2-Br4	2.938	0.447	1.945
	Pb2-O3	2.444	0.408	
	Pb2-O2	2.966	0.099	
	Pb3-Br1#4	3.030	0.349	
	Pb3-Br3#3	3.230	0.203	
	Pb3-O1#4	2.581	0.282	1 640
	Pb3-O2#4	2.543	0.312	1.040
	Pb3-O3	2.373	0.494	1.740
	Pb3-Br4	3.256	0.189	
	Pb3-Br4	3.427	0.119	

Green font: Longer secondary bonds are considered.

Symmetry transformations used to generate equivalent atoms:

 $\begin{array}{l} For \ CdPb_8(SeO_3)_4Br_{10} : \ \#1 \ X, 1-Y, 1/2+Z; \ \#2 \ +X, 1+Y, +Z; \ \#3 \ 1-X, 1+Y, 3/2-Z; \ \#4 \ 1-X, 1-Y, 1-Z; \\ \#5 \ 1-X, +Y, 3/2-Z; \ \#6 \ 3/2-X, 1/2-Y, 1-Z; \ \#7 \ -1/2+X, 1/2+Y, +Z \end{array}$

For Pb₃(TeO₃)Br₄: #1 +X,+Y,-1+Z; #2 1-X,1-Y,-1/2+Z; #3 -1/2+X,1/2-Y,+Z; #4 1-X,1-Y,1/2+Z; #5 +X,+Y,1+Z;#6 1/2+X,1/2-Y,+Z

CdPb ₈ (SeO ₃) ₄ Br ₁₀					
Polar unit		Dipole mon	nent (D)		
Building Blocks	total	total	X-	у-	Z-
	magnitude	magnitude	component	component	component
	$Se(1)O_3$	10.223	-0.745	0.644	10.176
	$Se(1)O_3$	10.223	0.745	0.644	-10.176
Se2	Se(2)O ₃	10.414	-10.344	-0.211	1.189
	Se(2)O ₃	10.414	10.344	-0.211	-1.189
Cat	Net dipole moment of (SeO ₃) ₄	0.866	0	0.866	0
Set Set	Cd(1)O ₆	5.245	0.000	5.245	0.000
6	Net dipole moment of Cd(SeO ₃) ₄	3.597	0	3.597	0
•	Cd(1)O ₆	4.379	0.000	4.379	0.000
	$Pb(3)O_2Br_6$	4.417	3.364	-0.757	-2.760
	$Pb(3)O_2Br_6$	4.417	-3.364	-0.757	2.760
	$Pb(4)O_2Br_3$	14.014	3.370	-6.258	12.078
	$Pb(4)O_2Br_3$	14.014	-3.370	-6.259	-12.078
	Net dipole moment of CdPb ₄ O ₆ Br ₁₄	9.652	0.000	-9.652	0.000
P . P	$Pb(1)O_5Br$	13.556	10.066	-2.575	-8.708
Pb)	$Pb(1)O_5Br$	13.556	-10.066	-2.575	8.708
Rbit Pib2	Pb(2)O ₅ Br	4.311	0.377	3.130	-2.941
	$Pb(2)O_5Br$	4.311	-0.377	3.130	2.941
0	Net dipole moment of Pb ₄ O ₁₂ Br ₄	6.260	0.000	6.259	0.000
$Pb_3(TeO_3)Br_4$	1		1	1	1
	$Te(1)O_3$	11.884	10.499	-0.433	5.550
Ter	$Te(1)O_3$	11.884	-10.499	0.432	5.552
	Net dipole moment of $(TeO_3)_2$	11.10	0	0	11.102
	$Pb(1)O_2Br_5$	6.181	-4.857	3.802	-0.391
٩	$Pb(1)O_2Br_5$	6.181	4.857	-3.802	-0.391
	Pb(2)OBr ₅	4.703	2.590	-3.913	0.312
	Pb(2)OBr ₅	4.703	-2.590	3.913	0.312
	$Pb(3)O_3Br_4$	8.052	-0.769	0.667	-7.987
202 - Co 201	$Pb(3)O_3Br_4$	8.052	0.769	-0.667	-7.987
00 ° 0	Net dipole moment of this unit	16.133	0	0	-16.133

Table S3. Calculation of the dipole moments of some building blocks in $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$ (D = Debyes).

	Pb ₃ (TeO ₃	3)Cl ₄		
	Dipole moment (D)			
Polar unit	total magnitude	x-component	y-component	z-component
	12.833	11.353	0.056	5.982
$T_{2}(1)O$	12.824	11.344	-0.056	5.981
$1e(1)O_3$	12.822	-11.343	0.0564	5.979
	12.832	-11.353	-0.056	5.982
Net dipole moment of $Te(1)O_3$	23.925	0.001	0.001	23.925
	9.509	-5.089	1.093	-7.957
$Ph(1) \cap C1$	9.508	5.089	1.092	-7.957
$PD(1)O_3Cl_4$	9.509	5.089	-1.094	-7.958
	9.509	-5.089	-1.094	-7.958
Net dipole moment of $Pb(1)O_3Cl_4$	31.831	0	-0.003	-31.831
	2.098	2.097	-0.030	-0.054
DI -(2)OC1	2.098	2.097	0.030	-0.054
Pb(2)OC15	2.098	-2.097	0.030	-0.054
	2.098	-2.097	-0.030	-0.054
Net dipole moment of Pb(2)OCl ₅	0.218	0	0	-0.218
	5.135	-4.585	2.308	-0.138
	5.135	-4.585	-2.308	-0.138
$PD(3)O_2CI_5$	5.136	4.586	-2.308	-0.140
	5.136	4.586	2.308	-0.140
Net dipole moment of Pb(3)O ₂ Cl ₅	0.556	0.002	0	-0.556
Net dipole moment (a unit cell)	8.680	-0.418	-0.002	-8.722
Pb ₃ (TeO ₃)Br ₄				
		Dipole me	oment (D)	
Polar unit	total magnitude	x-component	y-component	z-component
	11.888	10.503	0.431	5.552
$T_{2}(1)O$	11.884	10.499	-0.433	5.550
$1e(1)O_3$	11.884	-10.499	0.432	5.552
	11.889	-10.503	-0.431	5.554
Net dipole moment of $Te(1)O_3$	22.208	0	0	22.208
	6.181	4.857	3.802	-0.391
$\mathbf{D}\mathbf{b}(1)\mathbf{O}\mathbf{D}\mathbf{r}$	6.181	4.857	-3.802	-0.391
$PD(1)O_2Br_5$	6.181	-4.857	3.802	-0.391
	6.181	-4.857	-3.802	-0.391
Net dipole moment of $Pb(1)O_2Br_5$	1.565	0	0	-1.565
Dh(2)OD-	4.701	2.590	3.911	0.312
PD(2)OBI5	4.701	2.590	-3.911	0.312

Table S4. The dipole moments of the polar units and the unit cell of $Pb_3(TeO_3)Cl_4$ and $Pb_3(TeO_3)Br_4$ (D = Debyes).

	4.701	-2.590	3.911	0.312
	4.701	-2.590	-3.911	0.312
Net dipole moment of Pb(2)OBr ₅	1.248	0	0	1.248
Pb(3)O ₃ Br ₄	8.053	-0.772	-0.665	-7.988
	8.053	-0.772	0.665	-7.988
	8.053	0.772	-0.665	-7.988
	8.053	0.772	0.665	-7.988
Net dipole moment of $Pb(3)O_3Br_4$	32.271	0	0	-32.271
Net dipole moment (a unit cell)	10.062	0	0	-10.062

Table S5. State energies (eV) of the lowest conduction band (L-CB) and the highest valence	
band (H-VB) of $CdPb_8(SeO_3)_4Br_{10}$ and $Pb_3(TeO_3)Br_4$.	

Compound	k-point	L-CB	H-VB
	Z (0.000, 0.000, 0.500)	3.011678	-0.18565
	G (0.000, 0.000, 0.000)	2.954599	-0.15266
	Y (0.000, 0.500, 0.000)	2.967506	-0.00769
$C_{\rm JDL}$ (S=O) D _r	A (-0.500, 0.500, 0.000)	3.129502	-0.00064
$CdPD_8(SeO_3)_4Br_{10}$	B (-0.500, 0.000, 0.000)	3.058268	-0.21462
	D (-0.500, 0.000, 0.500)	3.045194	-0.24492
	E (-0.500, 0.500, 0.500)	3.083478	0
	C (0.000, 0.500, 0.500)	3.133588	-0.03147
	G (0.000, 0.000, 0.000)	3.134203	0
	Z (0.000, 0.000, 0.500)	3.401155	-0.11537
	T (-0.500, 0.000, 0.500)	3.298867	-0.11899
Pb ₃ (TeO ₃)Br ₄	Y (-0.500, 0.000, 0.000)	3.458111	-0.02856
	S (-0.500, 0.500, 0.000)	3.532037	-0.0913
	X (0.000, 0.500, 0.000)	3.149716	-0.04157
	U (0.000, 0.500, 0.500)	3.438794	-0.11292
	R (-0.500, 0.500, 0.500)	3.295515	-0.07356

Figure S1. Simulated and experimental powder X-ray diffractometer patterns of $CdPb_8(SeO_3)_4Br_{10}$ (a), $Pb_3(TeO_3)Br_4$ (b) and Rietveld refinement plots of the powder XRD patterns for $CdPb_8(SeO_3)_4Br_{10}$ (c).

Figure S2. The $[Cd(SeO_3)_4]^{6-}$ unit (a), $Pb_4O_{12}Br_4$ tetramers (b), 3D network with fourmembered polyhedral ring (4-MR) tunnels (c) and the 1D chain formed by the $[Cd(SeO_3)_4]^{6-}$ units and $Pb_4O_{12}Br_4$ tetramers(d).

(c)

Figure S3. The lead bromide 3D skeletons (a), the 1D lead bromoxide 4-MR structures (b) and the lead tellurite chain (c) of $Pb_3(TeO_3)Br_4$.

Figure S4. TGA and DSC/DTA results of $CdPb_8(SeO_3)_4Br_{10}(a)$ and $Pb_3(TeO_3)Br_4(b)$.

Figure S5. UV-vis-NIR diffuse-reflectance spectra of $CdPb_8(SeO_3)_4Br_{10}$ (a) and $Pb_3(TeO_3)Br_4$ (b).

(b)

Figure S6. IR spectra of $CdPb_8(SeO_3)_4Br_{10}(a)$ and $Pb_3(TeO_3)Br_4(b)$.

Figure S8. Calculated refractive indices and birefringence of $CdPb_8(SeO_3)_4Br_{10}$ (a).

Figure S9. Total and partial density of states of $CdPb_8(SeO_3)_4Br_{10}$.

References

- 1. P. Kubelka and F. Munk, An Article on Optics of Paint Layers, *Technol. Physical* 1931, **12**, 259–274.
- 2. S. K. Kurtz and T. T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials., *J. Appl. Phys.*, 1968, **39**, 3798-3813.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 4. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Cryst.*, 2015, **C71**, 3-8.
- 5. A. L. Spek, Single-crystal structure validation with the program PLATON, *J. Appl. Cryst.*, 2003, **36**, 7–13.
- M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, *Phys-Condens Mat.*, 2002, 14, 2717-2744.
- 7. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, *Int. J. Quantum. Chem.*, 2000, 77, 895-910.
- 8. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 9. C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis, *Phys. Rev. B*, 1995, **52**, 14636-14645.
- 10. J. Lin, M.-H. Lee, Z.-P. Liu, C. Chen and C. J. Pickard, Mechanism for linear and nonlinear optical effects inβ–BaB₂O₄ crystals, *Phys. Rev. B*, 1999, **60**, 13380-13389.
- 11. S. N. Rashkeev, W. R. L. Lambrecht and B. Segall, Efficientab initiomethod for the calculation of frequency-dependent second-order optical response in semiconductors, *Phys. Rev. B*, 1998, **57**, 3905-3919.
- 12. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, *Phys. Rev. B*, 1990, **41**, 7892-7895.