Supporting information for

## Cooperative Effect of Copper-Induction and AIE Leading to Bright Luminescence of Gold Nanoclusters

Yongjie Zhang,<sup>a, ‡,\*</sup> Luyao Feng,<sup>b, ‡</sup> Jingyan Luan,<sup>b</sup> Guomei Zhang,<sup>a</sup> Ning Sheng,<sup>a</sup> Jinglin Shen<sup>b,\*</sup>

<sup>a</sup> School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
<sup>b</sup> School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China

\* Corresponding authors.

*E-mail addresses: yj\_zhang\_chemeng@tju.edu.cn (Y. Zhang), jinglinshen@163.com (J. Shen)* 

<sup>‡</sup> These authors contributed equally to this work.



Figure S1. Photoluminescence spectra of PRT-Au/Cu composite to show its stability.



Figure S2. (a) Full spectrum of X-ray photoelectron spectroscopy (XPS) for PRT-Au/Cu complex  $c[Cu^{2+}] = 12$  mM; (b) Comparison of Au 4f spectra between PRT-Au/Cs and PRT-Au/Cu complex.



Figure S3. Comparison of FTIR spectra between PRT-Au/Cu complex  $c[Cu^{2+}] = 12$  mM and primitive PRT-

AuNCs



**Figure S4.** SEM images of PRT-AuNCs/Cu<sup>2+</sup> systems with addition of (a) 10 mM; (b, d) 14 mM and (c) 16 mM Cu<sup>2+</sup>.



Figure S5. HR-TEM images of PRT-Au/Cu composite ( $c[Cu^{2+}] = 12 \text{ mM}$ ) at high magnification to show its detailed structure and components.



**Figure S6.** (a) pH-dependent photoluminescence spectra of **PRT-Au/Cu** composite (insets are the photos of samples at different pH under 365 nm UV lamp irradiation); (b) Size distribution of **PRT-Au/Cu** aggregates at different pH measured by dynamic light scattering.

Table S1. Photophysical parameters of PRT-AuNCs and PRT-Au/Cu composite in powder state

| Species   | $^{a}\lambda_{Em}/$ nm | $^{\mathrm{b}}	au_{\mathrm{l}}$ / $\mu\mathrm{s}$ | $^{\mathrm{b}}	au_{\mathrm{2}}$ / $\mathrm{\mu s}$ | <sup>c</sup> τ / μs |
|-----------|------------------------|---------------------------------------------------|----------------------------------------------------|---------------------|
| PRT-AuNCs | 615                    | 9.30                                              | 172.04                                             | 21.12               |
| (powder)  | 013                    | (0.9273)                                          | (0.0727)                                           | 21.13               |
| PRT-Au/Cu | (((                    | 11.72                                             | 169.05                                             | 27.07               |
| (powder)  | 000                    | (0.8389)                                          | (0.1611)                                           | 37.07               |

<sup>a</sup> Maximum emission wavelength.

<sup>b</sup> Components of bi-exponential luminescence lifetimes and pre-exponential factors.

<sup>c</sup> Averaged luminescence lifetimes measured at excitation wavelength of  $\lambda_{Ex} = 365$  nm.



Figure S7. Small angle X-ray scattering patterns of PRT-AuNCs, Cu(I)-thiolate complex and PRT-Au/Cu composite.



Figure S8. Phospherescent spectra of PRT-Au/Cu composite ( $\lambda_{Ex} = 385$  nm, delay time: 5 µs, gate width: 20 µs ).



**Figure S9.** Electroluminescence spectra of the WLED prepared with **PRT-Au/Cu** composite and commercially available BaMgAl<sub>10</sub>O<sub>17</sub>:Eu<sup>2+</sup> and (Ba,Sr)<sub>2</sub>SiO<sub>4</sub>:Eu<sup>2+</sup>.

| I/mA | CIE <i>x</i> | CIE y  | CCT / K |
|------|--------------|--------|---------|
| 20   | 0.2955       | 0.369  | 7001    |
| 40   | 0.2949       | 0.3684 | 7045    |
| 60   | 0.294        | 0.3613 | 7153    |
| 80   | 0.2925       | 0.3597 | 7245    |
| 100  | 0.2925       | 0.3589 | 7257    |
| 120  | 0.288        | 0.3613 | 7448    |
| 140  | 0.2884       | 0.3604 | 7433    |

Table S2. CIE coordinates and correlated color temperature (CCT) of the prepared WLED at different drive current.