Fe doping and interface engineering-induced dual electronic regulation of CoSe₂/Co₉S₈ nanorod arrays for enhanced electrochemical oxygen evolution

Guangyao Zhou,*a Chao Wei,a Zhijuan Li,*b Bin He,c Zhenyuan Liud and Jing Lia

^aCollege of science, Jinling Institute of Technology, Nanjing 211169, P. R. China

Email: zhouguangyao@jit.edu.cn

^bSchool of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China

Email: zhijuanlibbd@163.com

^cDepartment of Materials Engineering, Huzhou University, Huzhou 313000, P. R. China

^dSchool of Materials Science and Engineering, Jiangsu University of Science and Technology,

Zhenjiang 212003, P. R. China

Experimental section

Materials and reagents

The carbon cloth was purchased from Shanghai Hesen Electric. Co., Ltd. in China. Cobalt (II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$), Iron (III) nitrate nonahydrate ($Fe(NO_3)_3 \cdot 9H_2O$), urea, ammonium fluoride (NH_4F), sublimed S powder and Se powder were acquired from Aladdin Industrial Corporation. Commercial RuO₂ was purchased from Johnson Matthey Corporation. All the reagents were of analytical reagent grade and used without further purification.

Preparation of Fe-CoCH@CC nanorods array precursor

Prior to the synthesis, the carbon cloth (CC) was pre-treated in acetone, deionized (DI) water, and anhydrous ethanol by ultrasonication successively for 10 min. In a typical synthetic process, a piece of cleaned CC ($2 \times 4 \text{ cm}^2$) was immersed into 30 mL of mixed solution that contains 0.4 mmol of Fe(NO₃)₃·9H₂O, 1.2 mmol of Co(NO₃)₂·6H₂O, 5 mmol of urea and 2.5 of mmol ammonium fluoride (NH₄F). Then, the mixture was transferred into a 50 ml Teflon-lined autoclave and heated at 120 °C for 6 h. After cooling to room temperature naturally, the obtained product was washed with deionized water and ethanol several times.

Preparation of Fe-(CoSe₂/Co₉S₈)@CC nanorods array

For the synthesis of Fe-(CoSe₂/Co₉S₈)@CC, a piece of the obtained Fe-CoCH@CC sample, 60 mg of Se powder and 20 mg of sublimed S powder were placed at the downstream, midstream and upstream of a porcelain boat, respectively, which was heated to 350 °C with a ramp rate of 2 °C min⁻¹ for 2 hours under H₂/Ar (V_{H2} : V_{Ar} = 5:95) atmosphere. For comparison, CoSe₂/Co₉S₈@CC was fabricated under the identical synthetic procedure apart from using CoCH@CC as reaction precursor. In addition, Fe-CoSe₂@CC and Fe-Co₉S₈@CC were also prepared under the identical synthetic procedure except for the absence of S powder and Se powder, respectively.

Physicochemical characterizations

The morphology of products was evaluated by transmission electron microscopy (TEM, JEOL JEM-2100F, 200 kV) and scanning electron microscopy (SEM, Hitachi S-4800). X-ray diffraction (XRD) patterns on a Model D/max-rC X-ray diffractometer with a Cu K α radiation source (λ = 1.5406 Å) was employed to analyze the crystallinity of the samples. The surface chemistry state of samples was examined by X-ray photoelectron spectroscopy (XPS) using a Thermo VG Scientific ESCALAB 250 spectrometer with an Al K α radiator. The vacancies were studied by the electron spin resonance (ESR) test using an ECS 106 ESR spectrometer (Bruker, Rheinstetten, Germany) with an X-band resonator (ER 4103TM).

Electrochemical measurements

All electrochemical tests were performed on a CHI 760E electrochemical workstation in 1.0 M KOH solution using a standard three-electrode system, in which the harvested self-supported electrode was directly served as working electrode, and a graphite rod and a saturated calomel reference electrode (SCE) were used as counter electrode and reference electrode, respectively. Linear sweep voltammetry (LSV) was carried out with a scan rate of 5 mV s⁻¹. The electrochemical double-layer capacitance (C_{dl}) using cyclic voltammetry (CV) method within a non-Faradaic potential range (1.1-1.2 V) at different scan rates (2-10 mV s⁻¹). In this work, all potentials were calibrated to reversible hydrogen electrode (RHE).

Fig. S1 (a) XRD pattern and (b)-(d) SEM images of the Fe-CoCH@CC precursors.

Fig. S2 (a) XRD pattern and (b)-(d) SEM images of the Fe-CoSe₂@CC precursors.

Fig. S3 (a) XRD pattern and (b)-(d) SEM images of the $Fe\text{-}Co_9S_8@CC$ precursors.

Fig. S4 (a) XRD pattern and (b)-(d) SEM images of the $CoSe_2/Co_9S_8@CC$ precursors.

Fig. S5 (a) Elemental mapping images and (b) EDX line-scan profiles of the harvested Fe- $(CoSe_2/Co_9S_8)@CC.$

Fig. S6 XPS survey spectrum of the harvested Fe-(CoSe₂/Co₉S₈)@CC.

Fig. S7 CV curves of (a) Fe-(CoSe₂/Co₉S₈)@CC, (b) Fe-Co₉S₈@CC, (c) Fe-CoSe₂@CC, (d) CoSe₂/Co₉S₈@CC and (e) Fe-CoCH@CC.

Fig. S8 Morphological and surface chemistry state of the Fe-(CoSe₂/Co₉S₈)@CC electrode after OER stability test. (a)-(b) SEM images, (c)-(d) TEM images, (e) HRTEM image, (f) Co 2p XPS spectra, (g) Fe 2p XPS spectra, (h) S 2p XPS spectra and (i) Se 3d XPS spectra.

Catalysts	$\eta_j = 10 \text{ mA cm}^{-2}$ /mV	Tafel slope /mV dec ⁻¹	References
Fe-(CoSe ₂ /Co ₉ S ₈)@CC	243	44.5	This work
Co ₄ S ₃ /Mo ₂ C-NSC	268	61.2	Appl. Catal. B., 2020, 260, 118197.
Co/CoS/Fe-HSNC-700	250	62.6	Chem. Eng. J., 2021, 403, 126385.
H-Fe-CoMoS	282	58	Nano Energy, 2020, 75, 104913.
CoO-CoSe2@N-CNTs/rGO	250	68	Chem. Eng. J., 2021, 422, 129982.
CoFe-based zemannite-type sele	nite 274	45.6	Chem. Eng. J., 2020, 399, 125799.
V-NiS/NiS ₂	220	72	Adv. Energy Mater., 2023, 13, 2300978.
P-CoNi ₂ S ₄	288	40	Angew. Chem. Int. Ed., 2021, 60, 22885.
NF-C/CoS/NiOOH	296	52.90	Nanomicro Lett., 2020, 12, 162.
CoS/Co/MoC-N,S-PCNFs-20	289	124.5	Chin Chem Lett., 2021, 32, 2243.
NiFe LDH/NiS	230	110.7	Adv. Energy Mater., 2021, 11, 2102353.
Ni(CN) ₂ /NiSe ₂	270	68	Adv. Mater., 2022, 34, 2104405.
Cu-NiS ₂	232	46	Small, 2020, 16, 1905885.
Am-Mo-NiS _{0.5} Se _{0.5}	238	48	Angew. Chem. Int. Ed., 2023, 62,
			e202215256.
Co _{1-x} S/Co(OH)F/CC	269	71	ACS Nano, 2022, 16, 15460.

Table S1 Comparison the OER performance of Fe-($CoSe_2/Co_9S_8$)@CC electrode with those recently reported transition metal chalcogenide-based electrocatalysts in 1.0 M KOH solution.