Electronic Supporting Information

Boosting photoelectrochemical water splitting of Fe₂O₃ by surface

states regulation

Shanshan Jiang^a, Xinxin Zhang^a, Madiha Nawaz^a, Xiaoxing Fan^{a, b*}, Ran Tao^{a, b#}

^a School of Physics, Liaoning University, Shenyang, 110036. P. R. China.

^b Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials, Liaoning

University, Shenyang 110036, P. R. China.

*Corresponding author. E-mail address: xxfan@lnu.edu.cn

[#]Corresponding author. E-mail address: <u>taoran@lnu.edu.cn</u>

Contents of Supplementary

1.Experimental section

2.The equations

3.Supplementary Figures

4.References

1. Experimental section

1.1 Characterization

The crystal structure of Fe₂O₃-based photoanode was characterized using X-ray diffraction (XRD, TD-3500). The morphology and cross-section of the thin films were observed using a scanning electron microscope (FE-SEM, Regulus 8100), and the elements present in the film were further tested using energy dispersive X-ray spectroscopy (EDS, Oxford). X-ray photoelectron spectroscopy (XPS, UIVAC-PHI) measurements of the photoanode film's elemental composition and chemical state were conducted using a PHI 5000 Verse probe. The UV-visible diffuse reflectance spectroscopy (UV-vis DRS) was measured at room temperature using a UV-2600 spectrophotometer (Shimadzu, Japan).

1.2 PEC performance test

The PEC performance was measured on an electrochemical workstation (Princeton Applied Research 2273 model) using a standard three-electrode system. The light intensity was set to 100 mW/cm², equivalent to 1 Sun at AM 1.5G. The standard three-electrode system consisted of Pt as the counter electrode, Ag/AgCl as the reference electrode, and Fe₂O₃-based photoelectrodes as the working electrode. The PEC performance was measured in the 1 M NaOH (pH \approx 13.6) electrolyte. Electrochemical impedance spectroscopy (EIS) measurements was conducted with the frequency ranging from 10 kHz to 0.1 Hz. Gas evolution was analyzed by gas chromatography (GC1690, JieDao) with a three-electrode system.

2. The equations

Eq S1 was used to convert Ag/AgCl reference potential into RHE1:

$$V_{RHE} = V_{Ag/Agcl} + 0.197 + 0.059 \, pH$$

Eq S2 was used to calculate IPCE²:

$$IPCE = \frac{J \times 1240}{\lambda \times P_{light}} \times 100\%$$

Where J is the photocurrent density (mA/cm²); λ is the incident light wavelength (nm); P_{light} is the power density (mW/cm²).

Eq S3 was used to calculate ABPE³:

$$ABPE = \frac{J(1.23 - V_b)}{P} \times 100\%$$

S3

where J is the photocurrent density of samples, $V_{\rm b}$ is the applied external potential vs.

RHE and P_{light} is the power density of the illumination (100 mWcm⁻²).

Eq S4 was used to calculate The Faraday efficiencies⁴:

$$H_{2}(or \ O_{2})\mu mol.cm^{-2} = \left(\frac{Area \ of \ H_{2}(or \ O_{2})peak}{Slope \ of \ calibration \ curve \ for \ H_{2}(or \ O_{2})}\right) \times (Head \ space \ volume) \times \left(\frac{1mol}{24.2 \ L}\right)$$
S4

Faradic efficiency=Actual photocurrent density/Theoretical photocurrent density

Actual photocurrent density =
$$N \times nH_2/O_2 \times F$$
 S5

Where F is the Faraday constant which is 0.096487 C/µmol. nH_2/O_2 (µmol) is amount of H_2 or O_2 evolution determined by gas chromatography. N is number of electrons needed to evolve one molecule of H_2 or O_2 . It is assumed that 2 electrons are needed to produce one molecule of H_2 , and 4 electrons are needed for one molecule of O_2 . Eq S6 was used to calculate LHE⁵:

$$LHE = 1 - 10^{-A(\lambda)}$$
 S6

where $A_{(\lambda)}$ is absorbance, λ is wavelength.

Eq S7 was used to calculate J_{abs}^{6} :

$$J_{abs} = \frac{q}{hc} \int_{\lambda}^{\lambda_2} \lambda \phi_{\lambda} \eta_{abs} d\lambda$$
 S7

Where h was the Plank constant, c was the light speed, ϕ_{λ} was the photon flux of the AM 1.5G solar spectrum, and η_{abs} was the light absorption efficiency.

Eq S8 was used to calculate η_{sep7} :

$$\eta_{sep} = \frac{J_{Na_2SO_3}}{J_{abs}}$$

Where The $\int_{Na_2SO_3}^{Na_2SO_3}$ was the photocurrent density measured in 1 M KOH and 0.5 M Na₂SO₃ mixed electrolyte, which served as hole scavengers to ensure the hole injection rate approaching 100%.

Eq S9 was used to calculate η_{inj8} :

$$\eta_{inj} = \frac{J_{H_2O}}{J_{Na_2SO_3}}$$

Where ${}^{J_{H_2}o}$ was the photocurrent densities measured in 1 M KOH. Eq S10 was used to calculate N_D⁹:

$$\frac{1}{C^2} = \left(\frac{2}{e\varepsilon\varepsilon_0 N_D A^2}\right) \left(V - V_{fb} - \frac{k_B T}{q}\right)$$
 S10

Where C was the space-charge capacitance, V (V vs. RHE) was the applied voltage, V_{fb} (V vs. RHE) was the flat-band potential, N_D was the charge carrier density, ϵ was

the dielectric constant of the semiconductor (80 for α -Fe₂O₃). ε_0 was the vacuum permittivity (8.854 x 10⁻¹² F/m), k_B was the Boltzmann constant(1.38×10⁻²³ J K⁻¹), q was the electronic charge (1.60 x10⁻¹⁹ C), and T was the absolute temperature (298K). Eq S11 was used to calculate $\tau_{e^{10}}$:

$$\tau_e = \frac{1}{2\pi f_{max}}$$

S11

Where f_{max} is the frequency when phase reaches peak.

Eq S12 was used to calculate C_{dl}^{11} :

$$ECSA \propto C_{dl} = \frac{\frac{dQ}{dt}}{\frac{dV}{dt}} = \frac{j(V)}{v}$$

S12

Where C_{dl} indicates the double-layer electrochemical capacitance, j(V) is the capacitive current measured at potential V, and v is the scan rate.

Eq S13 was used to calculate **DOS**¹²:

$$N_{SS}(E) = \frac{C_{trap}(E)}{q}$$

S13

Where Nss (E) is the DOS (cm⁻²·eV⁻¹) as a function of the applied potential and q is the electron charge ($1.602 \times 10-19$ C).

Eq S13 was used to calculate **the proportion of charge transferred** at the photoanode/electrolyte interface¹³:

$$Transfer \ efficiency(\%) = \frac{K_{ct}}{K_{ct} + K_{trapping}} = \frac{R_{trapping}}{R_{ct} + R_{trapping}}$$
S14

Where K_{ct} and $K_{trapping}$ are the charge transfer and trapping rate constants, respectively,

and R_{ct} and $R_{trapping}$ are the corresponding resistances.

3. Supplementary Figures

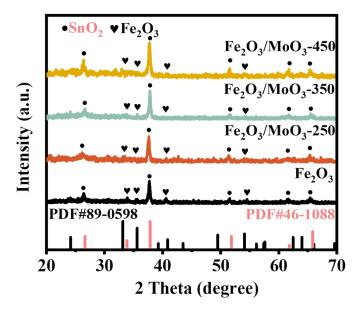


Fig. S1. XRD pattern of Fe₂O₃, Fe₂O₃/MoO₃-250, Fe₂O₃/MoO₃-350 and Fe₂O₃/MoO₃-450 films



Fig. S2. The cross section images of $Fe_2O_3 and \ Fe_2O_3/MoO_3\mbox{-}350$ films.

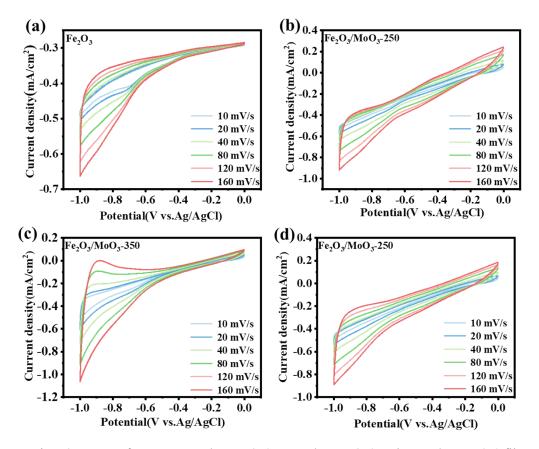


Fig. S3. ECSA of Fe₂O₃, Fe₂O₃/MoO₃-250, Fe₂O₃/MoO₃-350 and Fe₂O₃/MoO₃-450 films.

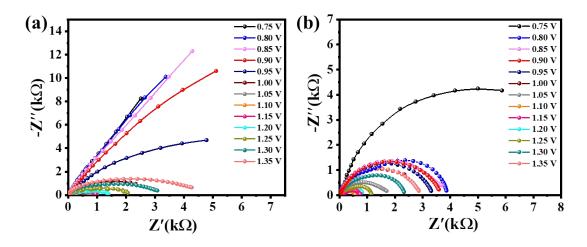


Fig. S4. The PEIS results for (a) Fe_2O_3 and (b) Fe_2O_3/MoO_3 -350 photoanodes at different applied biases under constant light illumination (100 mW/cm²).

Samples	$R_s(\Omega)$	$R_{bulk}(\Omega)$	$R_{ct}(\Omega)$	$\tau_e(ms)$
Fe ₂ O ₃	45.2	109.1	23830	20.1
Fe ₂ O ₃ /MoO ₃ - 250	41.7	50.8	1974.5	50.4
Fe ₂ O ₃ /MoO ₃ - 350	39.4	33.9	997.2	52.1
Fe ₂ O ₃ /MoO ₃ - 450	40.6	73.8	4054.6	31.8

 Table S1. Fitting results of EIS measurement

4. References

- Y. Zhao, M. Duan, C. Deng, J. Yang, S. Yang, Y. Zhang, H. Sheng, Y. Li, C. Chen and J. Zhao, Br/BrOmediated highly efficient photoelectrochemical epoxidation of alkenes on alpha-Fe₂O₃, *Nat. Commun.*, 2023, 14, 1943-1952.
- 2 B. Jin, Y. Lu, X. Zhang, X. Zhang, D. Li, Q. Liu, B. Deng and H. Li, Iceberg-inspired solar water generator for enhanced thermoelectricity-freshwater synergistic production, *Chem. Eng. J.*, 2023, 469, 143906.
- J. Zhang, J. Zhang, C. Dong, Y. Xia, L. Jiang, G. Wang, R. Wang and J. Chen, Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting, *Small*, 2023, 19, 2208049.
- 4 S. Li, S. M. Jung, W. Chung, J. W. Seo, H. Kim, S. I. Park, H. C. Lee, J. S. Han, S. B. Ha, I. Y. Kim, S. I. In, J. Y. Kim and J. Yang, Defect engineering of ternary Cu–In–Se quantum dots for boosting photoelectrochemical hydrogen generation, *Carbon Energy*, 2023, **384**, 1-14.
- 5 H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang and D. P. Wilkinson, Nano-architecture and material designs for water splitting photoelectrodes, *Chem. Soc. Rev.*, 2012, **41**, 5654-5671.
- 6 Y. Wang, Q. Pan, Y. Qiao, X. Wang, D. Deng, F. Zheng, B. Chen and J. Qiu, Layered Metal Oxide Nanosheets with Enhanced Interlayer Space for Electrochemical Deionization, *Adv. Mater.*, 2023, 35, 2210871.
- 7 M. G. Lee, J. W. Yang, I. J. Park, T. H. Lee, H. Park, W. S. Cheon, S. A. Lee, H. Lee, S. G. Ji, J. M. Suh, J. Moon, J. Y. Kim and H. W. Jang, Tailored BiVO₄/In₂O₃ nanostructures with boosted charge separation ability toward unassisted water splitting, *Carbon Energy*, 2023, **321**, 1-15.
- 8 K. Wang, H. Ni, W. Zhao, X. Wu, Y. Hu, G. Xiao and F. Jiang, Highly efficient GeSe micro-air-brick-based thin film standalone solar water-splitting photoelectrode with solar-light-soaking accumulation process, *Energy Environ. Sci.*, 2023, 16, 1155-1165.
- 9 H.-J. Ahn, K.-Y. Yoon, M. Sung, H. Yoo, H. Ahn, B. H. Lee, J. Lee and J.-H. Jang, Utilizing a Siloxane-Modified Organic Semiconductor for Photoelectrochemical Water Splitting, ACS Energy Lett., 2023, 8, 2595-2602.
- 10 L. Wang, J. Zhang, Y. Li, Y. Shi, J. Huang, Q. Mei, L. Wang, F. Ding, B. Bai and Q. Wang, Heterostructured CoFe_{1.5}Cr_{0.5}S₃O/COFs/BiVO₄ photoanode boosts charge extraction for efficient photoelectrochemical water splitting, *Appl. Catal. B: Environ.*, 2023, **336**, 122921.
- 11 R. Ghosh, B. Papnai, Y. S. Chen, K. Yadav, R. Sankar, Y. P. Hsieh, M. Hofmann and Y. F. Chen, Heterostructured CoFe_{1.5}Cr_{0.5}S₃O/COFs/BiVO₄ photoanode boosts charge extraction for efficient photoelectrochemical water splitting, *Adv. Mater.*, 2023, **35**, 2210746.
- 12 H. Zhang, G. She, J. Xu, S. Li, Y. Liu, J. Luo and W. Shi, Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe₂O₃ nanostructures, *J. Mater. Chem.A*, 2022, **10**, 4952-4959.
- 13.C. Venkata Reddy, I. N. Reddy, B. Akkinepally, K. R. Reddy and J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe₂O₃ nanostructure photoanode, *J. Alloys Compd.*, 2020, **814**, 152349.