Supplementary Information

Bilayer electrolyte design toward high-voltage durable solid-state lithium metal batteries

Qiujun Wang ^a, Yaqing Wang ^a, Yanqiang Ma ^a, Di Zhang ^a, Zhaojin Li ^a, Huilan Sun ^a, Bo Wang ^{a,*}, Dong Zhou ^{b,*}, Li-Zhen Fan ^{c,*}

- ^a Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
- ^b Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- ^c Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced

Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author.

E-mail: <u>wangbo1996@gmail.com</u> (B. Wang); <u>zhou.d@sz.tsinghua.edu.cn</u> (D. Zhou); <u>fanlizhen@ustb.edu.cn</u> (L.-Z. Fan)

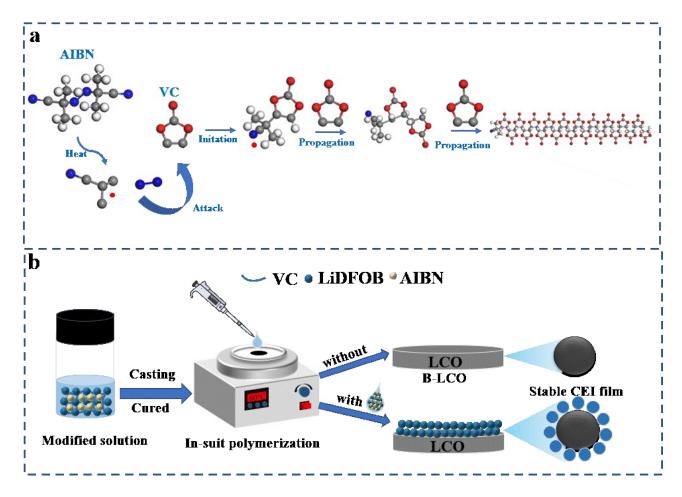
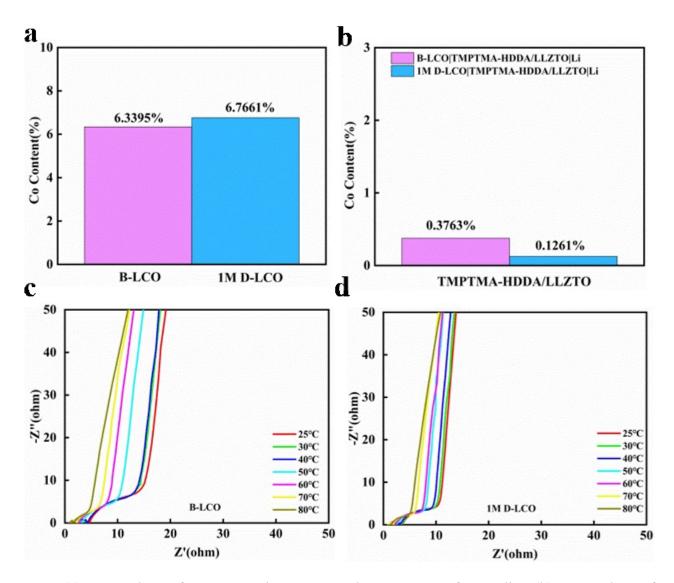



Fig. S1. (a) Mechanism for polymerization of VC. (b) Schematic illustration of preparation process

of in-situ CEI coating.

Fig. S2. SEM images of the LLZTO

Fig. S3. (a) Comparison of Co content in B-LCO and 1M D-LCO after cycling (b) Comparison of Co content of TMPTMA-HDDA/LLZTO electrolyte in B-LCO|TMPTMA-HDDA/LLZTO|Li and 1M D-LCO|TMPTMA-HDDA/LLZTO|Li cells after cycling. Electrochemical impedance spectroscopy (EIS) of (c) B-LCO and (d) 1M D-LCO at different temperatures.

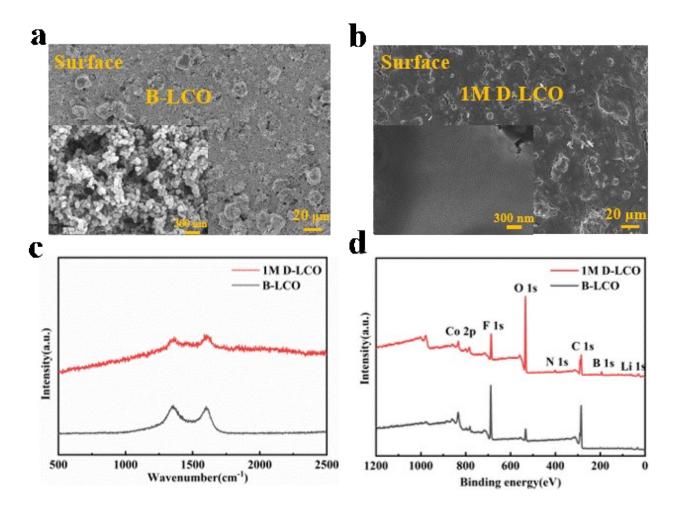
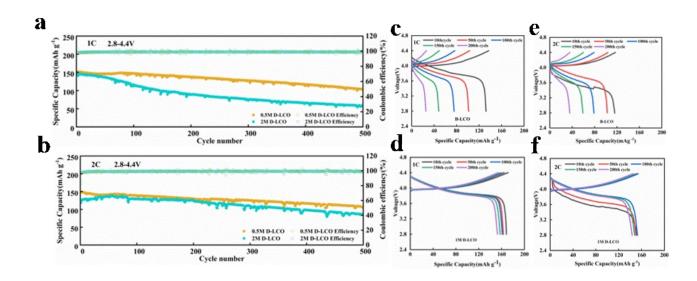



Fig. S4. The morphology SEM images of (a) B-LCO, (b) 1M D-LCO. (c) Raman spectra of B-LCO

and 1M D-LCO. (d) XPS analysis of B-LCO and 1M D-LCO.

Fig. S5. The discharge capacity and coulombic efficiency of 0.5M D-LCO|TMPTMA-HDDA/LLZTO|Li, 2M D-LCO|TMPTMA-HDDA/LLZTO|Li, cells for 500 cycles at 2.8-4.4 V (a) at 1 C, (b) at 2 C. Charge-discharge curves of (c) B-LCO|TMPTMA-HDDA/LLZTO|Li and (d) 1M D-LCO|TMPTMA-HDDA/LLZTO|Li cells during cycling at 1 C at 2.8-4.4V. Charge-discharge curves of (e) B-LCO|TMPTMA-HDDA/LLZTO|Li and (f) 1M D-LCO|TMPTMA-HDDA/LLZTO|Li cells during cycling at 2 C at 2.8-4.4V.

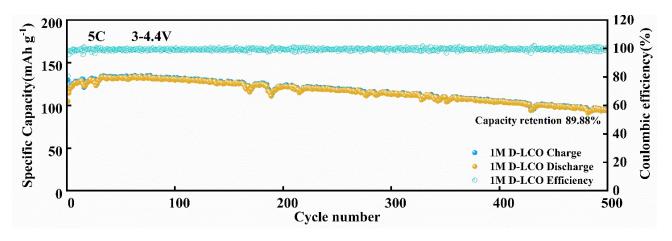


Fig. S6. The discharge capacity and coulombic efficiency of 1M D-LCO|TMPTMA-HDDA/LLZTO|Li cell for 500 cycles at 2.8-4.4 V at 5 C.

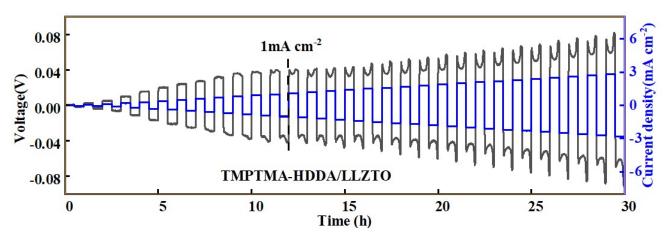


Fig. S7. The critical current density of the TMPTMA-HDDA/LLZTO.

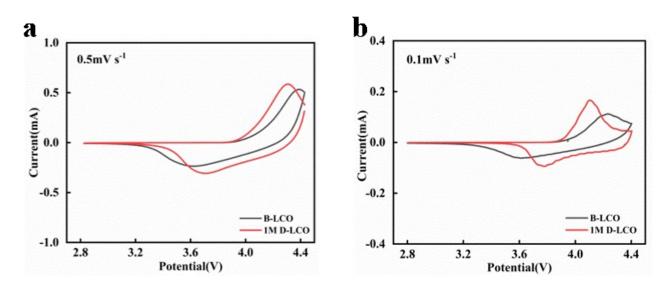


Fig. S8. (a) CV curves of B-LCO and 1M D-LCO at 0.5 mV s⁻¹. (b) CV curves of B-LCO and 1M D-LCO at 0.1 mV s⁻¹ after cycling .

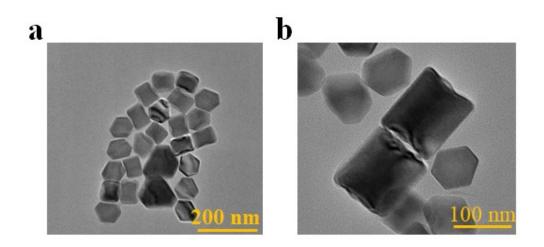


Fig. S9. (a, b) TEM images of 1M D-LCO after cycling.

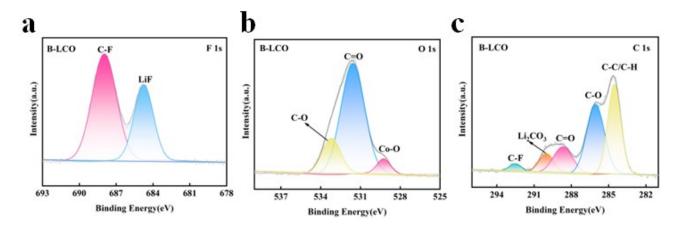
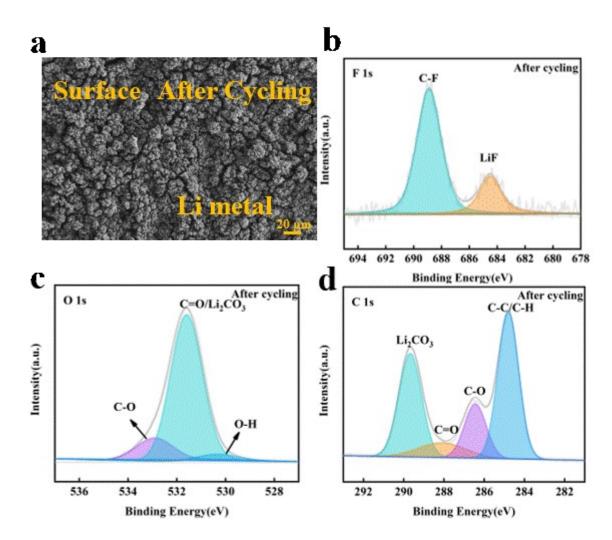
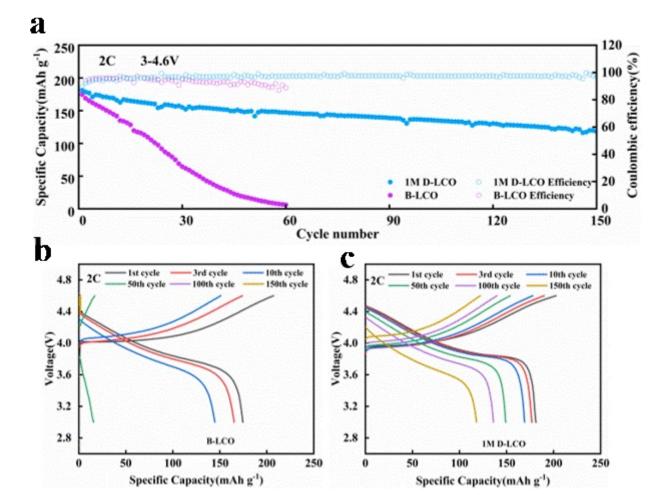




Fig. S10. XPS spectra of the B-LCO after cycling (a) F 1s, (b) O 1s and (c) C 1s.

Fig. S11. (a) The surface SEM images, and XPS analysis of (b) F 1s, (c) O 1s, (d) C 1s of Li metal anode after cycling.

Fig. S12. (a) Cycling performance of the B-LCO|TMPTMA-HDDA/LLZTO|Li, 1M D-LCO|TMPTMA-HDDA/LLZTO|Li, cells for 150 cycles at 2 C in the voltage range of 3.0-4.6 V and the corresponding charge-discharge curves of (b) B-LCO|TMPTMA-HDDA/LLZTO|Li, and (c) 1M D-LCO|TMPTMA-HDDA/LLZTO|Li cells during cycling at 2 C.

Modified Cathode	Volatge (V vs Li/Li ⁺)	Current density	Discharge capacity (mAh g ⁻¹)	Capacity retention	Cell	Reference
PECA-LCO	2.5-4.45	/	172.8	/	PECA-LCO PEO- LiDFOB Li	1
PMA-LiTFSI- LCO	2.5-4.25	0.2 C	119	91.2%/100 th	LCO PEO- LiTFSI/PMA- LiTFSI Li	2
0.5%PAA-LCO	3-4.3	0.05 C	150.2	83.33%/90 th	0.5%PAA- LCO PEO-based SSE Li	3
LCO	2.75-4.3	0.5 C	140	87.2/350 th	LCO CSPE Li	4
PEO/LiDFOB- LCO	3-4.2	0.2 C	125	75%/100 th	D-PEO PEO- LiTFSI Li	5
LaPO ₄ /Al ₂ O ₃ - LCO	3-4.6	1 C	/	87%/200 th	LIBs	6
PVC/LiDFOB -LCO	2.8-4.4	2 C	141.2	83.57%/500 th	1M D-LCO TMPTMA- HDDA/LLZTO Li	This work

Tab. S1 Comparison of electrochemical performance of matched high-voltage LCO cathode cell

Reference

- J. Ma, Z. Liu, B. Chen, L. Wang, L. Yue, H. Liu, J. Zhang, Z. Liu, G. Cui, A Strategy to Make High Voltage LiCoO₂ Compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries , *J. Electrochem. Soc.* 2017, **164**, A3454–A3461.
- W. Zhou, Z. Wang, Y. Pu, Y. Li, S. Xin, X. Li, J. Chen, J.B. Goodenough, Double-layer polymer electrolyte for high-voltage all-solid-sstate rechargeable batteries, *Adv. Mater.*, 2019, 31, 1–7.
- 3 Q. Zhang, N. Zhang, T. Yu, J. Zhang, B. Wen, L. Zhang, High-performance PEO-based solidstate LiCoO₂ lithium metal battery enabled by poly(acrylic acid) artificial cathode electrolyte interface, *Mater. Today Energy*, 2022, 29, 101128.
- Z. Li, Q. Liu, Y. Deng, M. Zhou, W. Tang, H. Dong, W. Zhao, R. Liu, In situ cross-linked plastic crystal electrolytes toward superior lithium metal batteries, *Mater. Today Energy*. 2023, 31, 101198.
- 5 Q. Han, S. Wang, W. Kong, W. Ren, Y. Liu, H. Wang, Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design, *Chem. Eng. J.*, 2023, **454**, 140104.
- Y. Zou, Y. Xiao, Y. Tang, Y. Cheng, S. Sun, M. Wang, Y. Yang, J. Zheng, Synergetic LaPO₄
 and Al₂O₃ hybrid coating strengthens the interfacial stability of LiCoO2 at 4.6 V, *J. Power Sources*, 2023, 555, 232409.