Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Figure S1. Experimental powder XRD data for compound **1** (red) and the simulated spectrum from the single crystal data (red).

Figure S2. (a) The $[Ni_5Zn_2]$ model created from the XRD structures of complex **1** employed to estimate the magnetic exchange interactions. (b) Magnetic exchange interaction model employed in the DFT calculations. (c-d) The dimetallic models **1A** and **1B** used respectively to estimate the magnetic exchange interactions between the central Ni(II) ion and the ring Ni(II) ions ($J_{1A} = 8.2 \text{ cm}^{-1}$), and between the ring Ni(II) ions ($J_{1B} = -3.1 \text{ cm}^{-1}$), respectively. (e) The dimetallic models **1C** used to develop the magnetostructural correlation. (f-i) Chemical models **1D-1G** used to perform *ab initio* CASSCF/NEVPT2 calculations on the ring Ni(II) and central Ni(II) ions, respectively.

Table S1. Selected spin configurations used for estimating the magnetic exchange interactions in complex **1**. Note that the errors in the calculated *J* values are less than 0.3%. $E_{(HS-BS-i)}$ values provide the relative energy (cm⁻¹) for spin configurations with respect to the spin configuration in which all Ni(II) ions align parallel (the high spin (HS) configuration).

Spin Configuration	Ni1	Ni2	Ni3	Ni4	Ni5	S (Total)	E _(HS-BS-i) (cm ⁻¹), i = 1-12
HS	1	1	1	1	1	5	
BS-1	-1	1	1	1	1	3	-23.2
BS-2	1	-1	1	1	1	3	-110.1
BS-3	1	1	-1	1	1	3	-20.1
BS-4	1	1	1	-1	1	3	-25.6
BS-5	1	1	1	1	-1	3	-28.4
BS-6	-1	1	-1	1	1	1	-49.5
BS-7	-1	1	1	1	-1	1	-49.6
BS-8	1	-1	-1	1	1	1	-81.2
BS-9	1	-1	1	1	-1	1	-77.6
BS-10	1	1	-1	-1	1	1	-48.9
BS-11	1	1	-1	1	-1	1	-47.8
BS-12	1	1	1	-1	-1	1	-60.6

Figure S3. Plot of the χT product versus *T* (top) and *M* vs *B* (middle) for **1**. Exchange interaction model used to fit the magnetic susceptibility and magnetisation data for 1. J_1 , J_3 represent J_{cr} interactions, J_2 , J_4 represent J_{rr} interactions, and D_1 and D_2 represent the anisotropy of the central Ni ion and ring Ni ions, respectively (bottom).

model **1A**. One moderate (green text) and three weak (black text) overlap integrals result in a moderate ferromagnetic interaction between the central (Ni(c)) and ring (Ni(r)) metal centres ($J_{1A} = 8.2 \text{ cm}^{-1}$).

 $<Ni(i) d_{x^{2}-v^{2}} || Ni(r) d_{z^{2}} > = 0.032$

<Ni(r) d_x²-_y² || Ni(r) d_z² > = 0.022 **Figure S5.** DFT estimated overlap integrals for model **1B**. Two moderate (green text) and two weak (black text) overlap integrals result in a weak antiferromagnetic interaction between central (Ni(c)) and ring (Ni(r)) metal centres (J_{1B} = -3.1 cm⁻¹).

Figure S6. DFT estimated spin density plots for the Ni_5Zn_2 model (see Figure S1). Spin density analysis suggests strong delocalisation of spins onto the coordinating ligand atoms followed by weak spin polarisation. The iso-density surface is plotted with an 0.005 e⁻/bohr³ iso-value.

Figure S7. DFT estimated spin density values for the Ni₅Zn₂ model (see Figure S1). Spin density analysis suggest strong delocalisation of spins onto the coordinating ligand atoms followed by weak spin polarisation.

Figure S8. Magneto-structural correlation developed for model **1C** with respect to the average Ni-O-Ni angle and average Ni-O distance.

Table S2. Shape analysis performed on the Ni(II) ions of complex 1.

HP-6	1 D _{6h}	Hexagor	l			
PPY-6	2 C _{5v}	Pentago	nal pyrami	d		
OC-6	$3 O_{h}$	Octahed	ron			
TPR-6	4 D _{3ł}	, Trigonal	prism			
JPPY-6	5 C ₅ ,	, Johnson	pentagona	al pyramid	J2	
Structure	[ML ₆]	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
Ni1/Ni5	,	32.969,	23.018,	1.806,	11.192,	27.212

Ni1/Ni5	,	32.969,	23.018,	1.806,	11.192,	27.212
Ni2/Ni6	,	33.875,	22.080,	2.034,	10.271,	26.313
Ni3/Ni7	,	33.273,	22.541,	1.744,	10.331,	26.655
Ni4	,	24.861,	26.623,	0.878,	16.389,	29.489

Figure S9. Chemical models used to perform *ab initio* CASSCF/NEVPT2 calculations on the ring Ni(II) and central Ni(II) ions along with the *ab initio* computed D_{zz} axis for the Ni1-Ni4 ions (solid cyan lines). Calculations were performed on the model complexes for Ni1-Ni4 shown on the outside of the central figure (a-d).

Figure S10. Chemical core model for complex **1** with the *ab initio* computed D_{zz} axis for the Ni1-Ni4 ions (solid cyan lines) together with Ni(1-4) – N/O distances. Note: the highlighted bonds in the table correspond to the bonds along the D_{zz} axis for the Ni1-Ni4 centres. Note that the direction of D_{zz} axis for Ni1-3 are along the shortest Ni- μ_3 O distance, whereas for Ni4, the D_{zz} axis is along the longest Ni- μ_3 O distance. The negative and positive sign of the D is associated with the compressed and elongated character of the octahedron, respectively.

Ni1/Ni5 ($D = -7.7 \text{ cm}^{-1}$; $E/D = 0.12$; $g = 2.185$, 2.203, 2.250)						
	Contribution to <i>D</i> (cm ⁻¹)	Dominant transitions				
Excitation I	-45.9	$d_{xy} \rightarrow d_{x^{2}-y^{2}}$				
Excitation II	18.6	$d_{xz} \rightarrow d_{x}^{2} d_{x-y}^{2}$				
Excitation III	17.5	$d_{xy} \rightarrow d_z^2$				
Ni2/Ni6 ($D = -7.3 \text{ cm}^{-1}$; $E/D = 0.10$; $g = 2.185$, 2.201, 2.245)						
Excitation I	-44.7	$d_{xy} \rightarrow d_{x^{2}-y^{2}}$				
Excitation II	18.1	$d_{xz} \rightarrow d_{x^2-y^2}$				
Excitation III	17.3	$d_{xy} \rightarrow d_z^2$				
Ni3/Ni7 ($D = -5.4 \text{ cm}^{-1}$; $E/D = 0.08$; $g = 2.188$, 2.199, 2.236)						
Excitation I	-42.5	$d_{xy} \rightarrow d_{x^{2}-y^{2}}$				
Excitation II	17.6	$d_{xz} \rightarrow d_{x^{2}-y^{2}}$				
Excitation III	17.5	$d_{xy} \rightarrow d_z^2$				
Ni4 ($D = 7.3 \text{ cm}^{-1}$; $E/D = 0.07$; $g = 2.227$, 2.244, 2.310)						
Excitation I	56.9	$d_{xz} \rightarrow d_{x^2-y^2}/d_z^2$				
Excitation II-III	- 42.9	$d_{xy} \rightarrow d_x^2 y^2/d_z^2$				

Table S3. *Ab initio* NEVPT2 calculated anisotropy parameters for the Ni(II) ions of complex **1**, along with the dominant electronic excitations for the first three excitations.

Figure S11. A schematic of the core of **1** with labelling used in the text to construct the magnetic Hamiltonian. In our analysis we have taken a single J_{rr} and a single J_{CR} connecting Ni1-6 to the central Ni7.

Figure S12. Inverse susceptibility of **1** versus temperature. A fit to a Cure-Weiss function above 90 K is illustrated along with the Cure-Weiss constant, Θ_{CW} = -18.5 K.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian, Inc., Wallingford CT*, 2016.
- a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter*, 1988, **37**, 785; b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372-1377; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.
- a) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; b) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; c) G. E. Scuseria and H. F. Schaefer, III J. Chem. Phys., 1989, 90, 3700.
- 4. P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta*, 1973, **28**, 213-222.
- a) L. Noodleman and D. A. Case, *Adv. Inorg. Chem.*, 1992, **38**, 423; b) L. Noodleman and E. R. Davidson, *Chem. Phys.*, 1986, **109**, 131; c) L. Noodleman, *J. Chem. Phys.*, 1981, **74**, 5737; d) L. Noodleman and J. G. Norman, *J. Chem. Phys.*, 1979, **70**, 4903.
- 6. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, **2**, 73–78.
- (a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.* 1995, 242, 652–660;
 (b) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor Chem Acc* 1997, 97, 119–124.
- (a) C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J.-P. Malrieu, *J. Chem. Phys.* 2001, **114**, 10252; (b) C. Angeli, R. Cimiraglia and J.-P. Malrieu, *J. Chem. Phys.* 2002, **117**, 9138; (c) C. Angeli, R. Cimiraglia and J.-P. Malrieu, *Chem. Phys. Lett.* 2001, **350**, 297–305.
- (a) M. K. Singh and G. Rajaraman, *Inorg. Chem.*, 2019, **58**, 3175-3188; (b) M. A. Halcrow, J.-S. Sun, J. C. Huffman and G. Christou, *Inorg. Chem.*, 1995, **34**, 4167-4177; (c) K. K. Nanda, L. K. Thompson, J. N. Bridson and K. Nag, *J. Chem. Soc., Chem. Commun.*, 1994, 1337-1338; (d) L. Ballester, E. Coronado, A. Gutierrez, A. Monge, M. F. Perpinan, E. Pinilla and T. Rico, *Inorg. Chem.*, 1992, **31**, 2053-2056; (e) E. Agapaki, M. K. Singh, A. B. Canaj, G. S. Nichol, J. Schnack and E. K. Brechin, *Chem. Commun.*, 2022, **58**, 9088-9091.
- 10. (a) A. Sarkar, S. Dey and G. Rajaraman, *Chem. Eur. J.*, 2020, **26**, 14036-14058; (b) S. K. Singh, T. Gupta, P. Badkur and G. Rajaraman, *Chem. Eur. J.*, 2014, **20**, 10305.