Electronic Supporting Information

Dichotomy of π -Stacking-Directing Noncovalent Forces in Inorganic–Organic Planar Assemblies. The Case of Platinum(II) Square-Plane π -Stacked with Halo-Substituted Benzoquinones

Eugene A. Katlenok,^{*1} Anton V. Rozhkov,¹ Maxim L. Kuznetsov,² Vitalii V. Suslonov^{1,3}, Vadim Yu. Kukushkin^{*1,4}

¹Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation; e-mails: e.katlenok@spbu.ru, v.kukushkin@spbu.ru

²Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal

³S.M. Kirov Medical Academy, Akad. Lebedeva St. 6, 194044 Saint Petersburg, Russian Federation

⁴Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation Table of Contents

S1.	CRYSTAL DATA AND STRUCTURE REFINEMENT	3
S2.	THERMOGRAVIMETRIC ANALYSIS	15
S3.	SOLID-STATE ¹⁹⁵ Pt NMR SPECTRA	16
S4.	CALCULATION DETAILS	23
S5.	CARTESIAN COORDINATES FOR THE STUDIED MOLECULES	42
0	ptimized geometries	42
	Cartesian coordinate for [1·QF] (in Å)	42
	Cartesian coordinate for [1·QCl] (in Å)	43
	Cartesian coordinate for [1·QBr] (in Å)	44
	Cartesian coordinate for [1·QI] (in Å)	46
	Cartesian coordinate for $[1 \cdot (QF)_2]$ (in Å)	48
	Cartesian coordinate for [1·(QCl) ₂] (in Å)	49
	Cartesian coordinate for $[1 \cdot (QBr)_2]$ (in Å)	51
	Cartesian coordinate for $[1 \cdot (QI)_2]$ (in Å)	52
	Cartesian coordinate for 1 (in Å)	54
	Cartesian coordinate for QF (in Å)	55
	Cartesian coordinate for QCl (in Å)	55
	Cartesian coordinate for QBr (in Å)	55
	Cartesian coordinate for QI (in Å)	56

S1. CRYSTAL DATA AND STRUCTURE REFINEMENT

Table S1. Crystal data and structure refinement for $1 \cdot QF$, $1 \cdot QCl$, $1 \cdot QBr$, and $1 \cdot QI$.

	1·QF	1·QC1	1·QBr	1·QI
Empirical formula	$C_{24}H_{12}F_4N_2O_3PtS_2$	$C_{24}H_{12}Cl_4N_2O_3PtS_2$	$C_{24}H_{12}Br_4N_2O_3PtS_2$	$C_{24}H_{12}I_4N_2O_3PtS_2$
Formula weight	711.57	777.37	955.21	1143.17
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic
Space group	P-1	P2 ₁	P2 ₁	Pna2 ₁
a/Å	7.30130(10)	7.94224(9)	7.69860(10)	18.1811(3)
b/Å	8.15735(11)	18.6997(2)	17.1871(2)	8.19870(10)
c/Å	18.77600(17)	8.20079(9)	9.55470(10)	17.8672(3)
$\alpha/^{\circ}$	101.8971(10)	90	90	90
β/°	92.8080(9)	101.1165(11)	101.2610(10)	90
γ/°	101.3060(11)	90	90	90
Volume/Å ³	1068.36(2)	1195.11(2)	1239.91(3)	2663.31(7)
Ζ	2	2	2	4
$\rho_{calc}g/cm^3$	2.212	2.160	2.559	2.851
μ/mm^{-1}	14.743	17.023	19.996	47.995
F(000)	680.0	744.0	888.0	2064.0
Crystal size/mm ³	$0.08 \times 0.06 \times 0.05$	$0.15\times0.1\times0.1$	$0.16 \times 0.14 \times 0.12$	$0.07 \times 0.06 \times 0.05$
Radiation	CuKa ($\lambda = 1.54184$)	CuKa ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	$Cu K\alpha (\lambda = 1.54184)$
2⊖ range for data collection/°	4.83 to 139.934	9.46 to 139.66	9.438 to 139.998	9.73 to 139.994
Index ranges	$\begin{array}{c} -8 \leq h \leq 8, -9 \leq k \leq \\ 9, -22 \leq l \leq 22 \end{array}$	$\begin{array}{c} -9 \leq h \leq 9, \ -22 \leq k \leq \\ 22, \ -9 \leq l \leq 9 \end{array}$	$\begin{array}{c} \textbf{-9} \leq h \leq \textbf{9}, \textbf{-20} \leq k \leq \\ 20, \textbf{-11} \leq \textbf{1} \leq \textbf{11} \end{array}$	$\begin{array}{l} -22 \leq h \leq 16, \text{-}9 \leq k \leq 5, \\ -21 \leq l \leq 20 \end{array}$
Reflections collected	25786	24743	17227	15387
Independent reflections	4019 [$R_{int} = 0.0557$, $R_{sigma} = 0.0316$]	4402 [$R_{int} = 0.0502$, $R_{sigma} = 0.0319$]	$\begin{array}{l} 4691 \; [R_{int} = 0.0458, \\ R_{sigma} = 0.0436] \end{array}$	$\begin{array}{l} 4529 \; [R_{int} = 0.0447, \\ R_{sigma} = 0.0380] \end{array}$
Data/restraints/paramete rs	4019/0/325	4402/1/325	4691/1/325	4529/1/325
Goodness-of-fit on F ²	1.044	1.124	1.076	1.052
Final R indexes [I>=2σ (I)]	$R_1 = 0.0216, WR_2 = 0.0509$	$R_1 = 0.0312, wR_2 = 0.0814$	$R_1 = 0.0222, wR_2 = 0.0515$	$R_1 = 0.0278, wR_2 = 0.0708$
Final R indexes [all data]	$R_1 = 0.0234, wR_2 = 0.0516$	$R_1 = 0.0322, wR_2 = 0.0820$	$R_1 = 0.0229, wR_2 = 0.0518$	$R_1 = 0.0285, wR_2 = 0.0712$
Largest diff. peak/hole / e Å ⁻³	0.98/-0.70	2.49/-1.28	0.80/-0.61	0.86/-0.78

Figure S1. Powder XRD patterns of $1 \cdot QF$.

Figure S2. Powder XRD patterns of 1 ·QCl.

Figure S3. Powder XRD patterns of 1. QBr.

Figure S4. Powder XRD patterns of 1 ·QI.

	1 ∙QF	1·QCl	1·QBr	1·QI
- Å	7.4536(10)	8.0004(10)	7 825(2) [7 6086(1)]	18.429(2)
a, A	[7.3013(1)]	[7.94224(9)]	/.833(3) [/.0980(1)]	[18.1811(3)]
1 8	8.1791(9)	18.694(2)	17.199(6)	0.0041(0) [0.1007(1)]
b, A	[8.15735(11)]	[18.6997(2)]	[17.1871(2)]	8.2841(9) [8.1987(1)]
Ŷ	18.921(2)	8.3850(11)		17.9630(18)
с, А	[18.77600(1)]	[8.20079(9)]	9.641(3) [9.5547(1)]	[17.8672(3)]
9	101.519(7)	001001	1001 00	00 [00]
α,-	[101.8971(10)]	90 [90]	90 [90]	90 [90]
0 0	93.177(5)	99.822(7)	101.816(15)	00 [00]
p,-	[92.8080(9)]	[101.1165(11)]	[101.261(1)]	90 [90]
9	99.172(5)	001001	1001 00	00 [00]
γ,°	[101.3060(11)]	90 [90]	90 [90]	90 [90]

Table S2. Refined unit cell parameters at room temperature from PXRD and cell parameters at100 K from single-crystal XRD (in square brackets).

Figure S5. Molecular structure of $1 \cdot QF$ showing C····Pt contacts (dotted lines). Here and in after non-hydrogen atoms are given as probability ellipsoids of atomic displacements (p = 0.5).

Figure S6. A fragment of crystal packing of $1 \cdot QF$ (Cg···Pt and π - π interactions are given by dotted lines).

Figure S7. Fragments (a and b) of the crystal structure of $1 \cdot QF$ with intermolecular HBs given by dotted lines.

Figure S8. Molecular structure of 1 ·QCl showing C…Pt contacts in dotted lines.

Figure S9. Fragment of crystal packing of $1 \cdot QCl$ (Cg···Pt and π - π interactions are in dotted lines).

Figure S10. Fragment of the crystal structure of $1 \cdot QCl$ showing intermolecular HBs (dotted lines).

Figure S11. Molecular structure of 1.QBr showing C...Pt contacts (dotted lines).

Figure S12. Fragment of crystal packing of $1 \cdot QBr$ (Cg···Pt and π - π separations are in dotted lines).

Figure S13. Fragment of the crystal structure of **1**·QBr showing intermolecular HBs (red dotted lines) and HaB (orange dotted line).

Figure S14. Molecular structure of $1 \cdot QI$ with C···Pt contacts in dotted lines.

Figure S15. Fragment of crystal packing of $1 \cdot QI$ (Cg···Pt and π - π interactions are dotted line).

Figure S16. HaB between QI molecules in the structure of $1 \cdot QI$.

Figure S17. Fragment of the crystal structure of $1 \cdot QI$; HaBs are given in dotted lines.

S2. THERMOGRAVIMETRIC ANALYSIS

Figure S18. TGA curves of crystal samples of 1 (black), QX (blue) and 1 QX (red).

Thermal properties. The thermal behavior of $1 \cdot QX$ is different from that of 1. On the thermogravimetric (TG) curves, for $1 \cdot QX$, the first mass-loss was observed at 166 °C (8% weight loss, $1 \cdot QF$), 204 °C (8% weight loss, $1 \cdot QCl$), 351 °C (8% weight loss, $1 \cdot QBr$), and 273 °C (29% weight loss, $1 \cdot QI$) (**Figure S18**). The parent complex 1 exhibits highest thermal stability among measured $1 \cdot QX$ and it starts to decompose at 275 °C (8% weight loss).

S3. SOLID-STATE ¹⁹⁵Pt NMR SPECTRA

Figure S19. ¹⁹⁵Pt solid-state NMR overlayed spectra for 1, $1 \cdot QF$, $1 \cdot QCl$, $1 \cdot QBr$ and $1 \cdot QI$ (MAS rotation frequency 13.3 kHz).

Figure S20. ¹⁹⁵Pt solid-state NMR overlayed spectra for **1** at 12.5 kHz (red) 13.0 kHz (green) and 13.3 kHz (blue) MAS rotation frequency (inset: enlarged part of spectra to determine δ_{iso}).

Figure S21. ¹⁹⁵Pt solid-state NMR overlayed spectra for 1·QF at 12.5 kHz (red) 13.0 kHz (green) and 13.3 kHz (blue) MAS rotation frequency (inset: enlarged part of spectra to determine δ_{iso}).

Figure S22. ¹⁹⁵Pt solid-state NMR overlayed spectra for 1·QCl at 12.5 kHz (red) 13.0 kHz (green) and 13.3 kHz (blue) MAS rotation frequency (inset: enlarged part of spectra to determine δ_{iso}).

Figure S23. ¹⁹⁵Pt solid-state NMR overlayed spectra for 1·QBr at 12.5 kHz (red) 13.0 kHz (green) and 13.3 kHz (blue) MAS rotation frequency (inset: enlarged part of spectra to determine δ_{iso}).

Figure S24. ¹⁹⁵Pt solid-state NMR overlayed spectra for 1·QI at 12.5 kHz (red) 13.0 kHz (green) and 13.3 kHz (blue) MAS rotation frequency (inset: enlarged part of spectra to determine δ_{iso}).

Analysis of the ¹⁹⁵Pt MAS-NMR spectra, measured at different spinning rates (12.5, 13.0, and 13.3 kHz), allowed the assignment of the isotropic ¹⁹⁵Pt chemical shifts (δ_{iso}). We found that δ_{iso} in the cocrystals are low-field shifted and $\Delta \delta_{iso}$ is in the range 92–112 ppm (**Table 2, Figures S19–24**). To interpret the obtained NMR data, we performed theoretical calculations of the magnetic shielding tensor and magnetically induced currents for the bimolecular models [1·QX] and also for the parent complex **1** (**Table S3**). As a whole, the calculated isotropic shift correlates well with the experimentally observed one. However, we found a discrepancy of the δ_{iso} between the theoretical and experimental data (**Table S3**), most likely because all noncovalent interactions were not considered in the bimolecular model.

The disc-like shaped orientations of the calculated magnetic shielding tensors are nearly the same for all systems. The σ_{11} axis of the tensor is directed perpendicularly to the molecular plane, while the σ_{33} axis is oriented toward the C[∩]N and N[∩]O chelated rings (**Figure S5**). The directions of the σ_{11} and σ_{33} tensors are most susceptible to all structural changes accompanied the generation of the adducts.

Next, the skew parameter (κ) increases from -0.53 to -0.47 ongoing from 1 QF to 1 QI. The κ value for 1 QI is practically the same as in the parent complex 1 (-0.48). According to refs¹⁻³, the changes in the κ values are associated with the deshielding effect oriented perpendicularly to the complex square-plane. The occurrence of intermolecular contacts between 1 and QX is also affected by the local environment around the Pt-atom, as reflected by a significant change in Ω on pairing of the coformers (3727 ppm for 1; 2620 1·QF; 2604 1·QCl; 2644 1·QBr; 2935 1.QI). Usually, strengthening of noncovalent interactions leads to a higher polarization of the electronic density of the system and this effect is accompanied by appropriate changes in density of the magnetically induced current (MIC) within the overall system.^{4, 5} Hence, visualization of MIC and quantitative estimate of the density along chemical bonds under study are useful parameters to understand reasons of the observed chemical shift. The analysis of MIC for the Pt–C, Pt–N, Pt–S, and N–C (in *pbt*-ligand) bonds revealed that the noncovalent interaction of 1 with any one of QX leads to an increase in diatropic and paratropic currents by 0.45–0.12 nT/A within the chelated rings. This effect increases in the series from [1·QI] to [1·QF] (Table **S3**). Such trend in the MIC density values is probably due to the polarization of electronic density from **1** toward QX.

Thus, we can conclude that the induction of ring currents in the QX molecule affects the MIC ring currents of 1, resulting in changes in the tensor components in the adducts. This is attributed to the formation of the $[1 \cdot QX]$ adducts.

	δ_{11} , ppm	δ_{22} , ppm	δ ₃₃ , ppm	δ_{iso} , ppm	Ω, ppm	κ
1	-3387	-4500	-5028	-4305	1641	-0.36
1·QF	-2673	-4957	-5053	-4228	2380	-0.92
1·QCl	-2496	-4859	-5238	-4198	2742	-0.72
1·QBr	-2502	-4871	-5247	-4207	2745	-0.73
1·QI	-2583	-4992	-5207	-4261	2624	-0.84

Table S3. Calculated Solid-State ¹⁹⁵Pt NMR Parameters of 1 and $1 \cdot QX$ (X = F, Cl, Br, I)

Figure S25. Clusters used in calculations.

Table S4. Electron density (ρ_b), its Laplacian ($\nabla^2 \rho_b$), potential and kinetic energy densities (V_b and G_b), second eigenvalue of the Hessian matrix (λ_2), electron localization function at BCPs (in a.u.), and IBSI.

Contact	Clusters	$ ho_b$	$\nabla^2 \rho_b$	V _b	G _b	H _b	λ_2	ELF
C1D…Pt	[1 ·QF]	0.0109	0.0279	-0.0055	0.0062	-0.0007	-0.0016	0.058
C1D…Pt	(1 ·QF)	0.0106	0.0298	-0.0052	0.0063	0.0011	-0.0029	0.051
C1D…Pt	$(1 \cdot QF)_{big}$	0.0108	0.0275	-0.0054	0.0062	0.0007	-0.0018	0.0567
C3D…Pt	[1·QCl]	0.0084	0.0217	-0.0040	0.0047	-0.0007	-0.0020	0.042
C3D…Pt	(1·QCl)	0.0076	0.0206	-0.0034	0.0043	-0.0009	-0.0015	0.037
C3D…Pt	$(1 \cdot QCl)_{big}$	0.0086	0.0214	-0.0038	0.0042	-0.0006	-0.0022	0.044
C3D…Pt	[1·QBr]	0.0070	0.0187	-0.0032	0.0039	-0.0007	-0.0011	0.033
C3D…Pt	(1·QBr)	0.0066	0.0158	-0.0031	0.0035	-0.0004	-0.0017	0.035
C3D…Pt	$(1 \cdot QBr)_{big}$	0.0071	0.0188	-0.0030	0.0037	-0.0006	-0.0009	0.030
C3D…Pt1	[1 ·QI]	0.0065	0.0175	-0.0175	0.0037	0.0007	-0.0009	0.030
C3D…Pt	(1·QI)	0.0059	0.0154	-0.0026	0.0032	0.0006	-0.0014	0.0288

	C3D…Pt	$(1 \cdot QI)_{big}$	0.0060	0.0156	-0.0027	0.0030	0.0005	-0.0014	0.0287
--	--------	----------------------	--------	--------	---------	--------	--------	---------	--------

Table S5. Contact distance (d) in Å, ratio between the distance and Alvarez Σ_{vdW} (R_r), electron density (ρ_b), its Laplacian ($\nabla^2 \rho_b$), potential and kinetic energy densities (V_b and G_b), second eigenvalue of the Hessian matrix (λ_2), elliptical bond index (ϵ) (in a.u.), electron localization function at BCPs, and IBSI and dg_{pair} at the PBE0-D3BJ/ZORA-def2-TZVP and PBE-D3BJ/ZORA-def2-TZVP (in parentheses for [1·QF]) levels of theory.

						[1 ·QF]						
Contact	d	R	ρ_b	$\nabla^2 \rho_b$	V _b	G _b	H(r)	3	λ_2	ELF	IBSI	dg _{pair}
C6D…Pt1	3.369	0.91	0.0115 (0.0115)	0.0286 (0.0270)	-0.0058 (-0.0053)	0.0065	0.0007	4.5504 (2.0725)	-0.0014	0.0628	0.0140	0.0646
C1D…Pt1	3.323	0.82	· · ·		· /	· /	()	· /	· · /	· · ·	0.0150	0.0672
C2D…Pt1	3.632	0.89									0.0081	0.0433
C3D…Pt1	3.965	0.98									0.0041	0.0263
C4D…Pt1	4.025	0.99									0.0039	0.0255
C5D…Pt1	3.739	0.92									0.0068	0.0385
C4D…O1	3.075	0.91	0.0071	0.0275 (0.0265)	-0.0040 (-0.0039)	0.0054 (0.0052)	0.0014 (0.0014)	0.3732 (0.2408)	-0.0029 (-0.0030)	0.0185 (0.0191)	0.0092	0.0352
C18…O2D	3.161	0.97	0.0057	0.0230	-0.0030 (-0.0025)	0.0044	0.0014 (0.0012)	0.4963	-0.0025 (-0.021)	0.0139	0.0066	0.0269
C12…F2D	3.289	1.02	0.0041	0.0166	-0.0021 (-0.0025)	0.0031	0.0010	0.5716	-0.0017 (-0.0026)	0.0095	0.0042	0.0183
C13…F1D	3.204	0.99	0.0048	0.0223	-0.0027 (-0.0029)	0.0042	0.0014 (0.0016)	3.9902 (7.579)	-0.0005 (-0.004)	0.0085	0.0051	0.0212
C14…F3D	3.282	1.02	· · /		· /	. ,			× ,	· · · ·	0.0040	0.0173
N1…C2D	3.255	0.95									0.0069	0.0296
						[1·QCl]						
Contact	d]	R ρ _b	$\nabla^2 \rho_b$	V _b	G _b	H(r)	3	λ_2	ELF	IBSI	dg _{pair}
C3D…Pt1	3.56	52 0.	.88 0.008	.0.0217	-0.0040	0.0047	0.0007	1.3753	-0.0020	0.0423	0.0096	0.0494
C1D…Pt1	3.79	97 0.	.94								0.0058	0.0339
C2D…Pt1	3.65	51 0.	.90								0.0080	0.0432
C4D…Pt1	3.61	12 0.	.89								0.0079	0.0420

0.0019

0.0039

0.0007

0.0012

0.5485

1.5291

-0.0010

-0.0015

0.0079

0.0051

0.0048

0.0030

0.0062

0.0064

0.0185

0.0420

0.0308

0.0301

0.0149

0.0307

3.612

3.837

3.914

3.530

3.480

0.95

0.96

1.08

0.97

0.0027

0.0058

0.0106

0.0204

-0.0012

-0.0028

 $C5D\cdots Pt1$

 $C6D\cdots Pt1$

 $C12 \cdots O2D$

C18···Cl3D

C6…Cl1D	3.658	1.02	0.0049	0.0177	-0.0022	0.0033	0.0011	2.4562	-0.0006	0.0144	0.0046	0.0250
C13…Cl3D	3.606	1.01									0.0062	0.0307
N1…Cl2D	3.491	1.00	0.0054	0.0220	-0.0027	0.0041	0.0014	0.8435	-0.0016	0.0135	0.0052	0.0255
C7···C2D	3.583	0.99									0.0051	0.0268
S2…C6D	3.515	0.96	0.0067	0.0201	-0.0030	0.0040	0.0010	0.3813	-0.0021	0.0274	0.0084	0.0421

[1·QBr]

Contact	d	R	ρ_b	$\nabla^2 \rho_b$	V _b	G _b	H(r)	3	λ_2	ELF	IBSI	dg _{pair}
C1D…Pt1	3.652	0.90	0.0079	0.0206	-0.0037	0.0044	0.0007	1.4355	-0.0018	0.0397	0.0073	0.0396
C2D…Pt1	3.600	0.87									0.0088	0.0461
C3D…Pt1	3.663	0.90									0.0078	0.0423
C4D…Pt1	3.785	0.93									0.0060	0.0344
C5D…Pt1	3.937	0.97									0.0046	0.0289
C6D…Pt1	3.885	0.96									0.0046	0.0286
C2…O2D	3.697	1.13	0.0023	0.0084	-0.0009	0.0015	0.0006	0.8781	-0.0004	0.0056	0.0021	0.0116
C12…O1D	3.567	1.09	0.0026	0.0102	-0.0011	0.0018	0.0007	0.7196	-0.0009	0.0059	0.0027	0.0142
C18…Br4D	3.586	0.99	0.0060	0.0189	-0.0028	0.0038	0.0009	0.9221	-0.0019	0.0226	0.0066	0.0345
C1…Br2D	3.713	1.02	0.0052	0.0173	-0.0024	0.0033	0.0010	8.6088	-0.0003	0.0175	0.0054	0.0304
C13…Br1D	3.646	1.00									0.0058	0.0314
C7…Br1D	3.742	1.03									0.0049	0.0276
C6…Br2D	3.720	1.02									0.0051	0.0285
N1…Br1D	3.612	1.03	0.0054	0.0204	-0.0026	0.0039	0.0012	1.6101	-0.0010	0.0147	0.0055	0.0292
N2…Br4D	3.599	1.02									0.0050	0.0263
S2…C4D	3.684	1.01	0.0067	0.0200	-0.0030	0.0040	0.0010	0.5042	-0.0020	0.0282	0.0058	0.0318
S2…Br3D	3.884	1.04									0.0063	0.0386
						[1·QI]						
Contact	d	R	ρь	$ abla^2 ho_b$	V _b	G _b	H(r)	3	λ ₂	ELF	IBSI	dg _{pair}
C3D…Pt1	3.764	0.93	0.0061	0.0167	-0.0028	0.0035	0.0007	8.7805	-0.0003	0.0271	0.0061	0.0348
C5D…Pt1	3.703	0.91	0.0065	0.0175	0.0175	0.0037	0.0007	2.3199	-0.0009	0.0299	0.0071	0.0369
C1D…Pt1	3.862	0.95									0.0046	0.0281
C2D…Pt1	3.879	0.96									0.0048	0.0291
C4D…Pt1	3.636	0.90									0.0081	0.0433

C6D…Pt1	3.794	0.93									0.0057	0.0334
C12…O1D	3.279	1.00	0.0048	0.0184	-0.0023	0.0034	0.0012	0.6982	-0.0017	0.0125	0.0052	0.026
C13…O1D	3.445	1.05									0.0037	0.0176
C2…I2D	3.851	1.01	0.0056	0.0158	-0.0024	0.0032	0.0008	2.2043	-0.0009	0.0247	0.0058	0.0351
C14…I3D	3.694	0.97	0.0066	0.0187	-0.0031	0.0039	0.0008	0.6408	-0.0019	0.0284	0.0078	0.0435
C18…I4D	3.898	1.02	0.0046	0.0136	-0.0020	0.0027	0.0007	0.8181	-0.0014	0.0185	0.0053	0.0327
C3…I2D	3.916	1.03									0.0051	0.0319
C7…I1D	3.839	1.01									0.0057	0.0343
C15…I3D	3.902	1.02									0.0050	0.0307
S1…I1D	3.934	1.00	0.0065	0.0177	-0.0027	0.0036	0.0009	0.4333	-0.0025	0.0327	0.0079	0.0495
S2…I3D	4.098	1.04									0.0384	0.0056
H12…I4D	3.688	1.14	0.0026	0.0082	-0.0011	0.0016	0.0005	2.4849	-0.0004	0.0076	0.0023	0.0102

Figure S26. QTAIM distribution of bond, ring, and cage critical points (red, yellow, and green spheres, respectively) and bond paths for $[1 \cdot QF]$.

Figure S27. QTAIM distribution of bond, ring, and cage critical points (red, yellow, and green spheres, respectively) and bond paths for $[1 \cdot QCl]$.

Figure S28. QTAIM distribution of bond, ring, and cage critical points (red, yellow, and green spheres, respectively) and bond paths for $[1 \cdot QBr]$.

Figure S29. QTAIM distribution of bond, ring, and cage critical points (red, yellow, and green spheres, respectively) and bond paths for $[1 \cdot QI]$.

Figure S30. ETS-NOCV deformation densities for (a) $[1 \cdot QBr]$ and (b) $[1 \cdot QI]$ (isovalues 0.0005 and 0.005 a.u., electrons transfer occurs from the decreased electron density regions (blue) to the increased electron density regions (red).

Geometry optimization

Analysis of the X-ray diffraction data shows that adducts $1 \cdot QX$ are arranged in stacks, where the quinone molecule interacts with the Pt complexes. To exclude the effect of crystal packing on the interactions between 1 and a quinone, the full geometry optimization of two cluster models of the cocrystals $1 \cdot QX$ was carried out, *i.e.* bimolecular and trimolecular clusters, $[1 \cdot QX]$ and $[QX \ 1 \cdot QX]$, respectively (**Figure S31**).

Figure S31. Schematic representation of of bimolecular (*left*) and trimolecular (*right*) model clusters used for the calculations.

To distinguish quinone molecules from each other depending on the position relative to the complex, we introduced the designations QX^A and QX^B (see Figure S32).

Figure S32. Schematic representation of QX^A and QX^B.

Comparison of the structural parameters of the X-ray and optimized structures indicates that the optimized geometries for **1** and QX^A of the bimolecular cluster models do not deviate significantly from the experimental structures (**Table S6**, **Figure S32**). At the same time, the optimization of trimolecular cluster resulted in the notable structural changes, *i.e.*, the QX^B molecule is strongly shifted relative to the X-ray structure (**Table S6**, **Figure S32**). Thus, in the further theoretical studies, the bimolecular model was used.

Table S6. Parameters of QX shifts.

Entry	<i>r</i> ,	Å	α	, ⁰
	QXA	QX ^B	QXA	QX ^B
$[QF^{A} \cdot 1 \cdot QF^{B}]_{XRD}$	1.578	2.972	25.7	56.0
[1·QF ^A]	0.920	_	15.7	_
$[QF^{A} \cdot 1 \cdot QF^{B}]$	0.966	1.323	16.5	23.5
$[QCl^{A} \cdot 1 \cdot QCl^{B}]_{XRD}$	1.222	2.811	18.0	38.3
[1·QCl ^A]	0.461	_	7.7	_
$[QCl^{A} \cdot 1 \cdot QCl^{B}]$	0.468	0.094	7.8	1.6
$[QBr^{A} \cdot 1 \cdot QBr^{B}]_{XRD}$	0.342	3.139	5.7	41.2
[1·QBr ^A]	0.463	_	7.8	_
$[QBr^{A} \cdot 1 \cdot QBr^{B}]$	0.457	0.579	7.6	9.6
$[QI^{A} \cdot 1 \cdot QI^{B}]_{XRD}$	1.566	2.623	23.5	36
$[1 \cdot \mathbf{Q} \mathbf{I}^{\mathbf{A}}]$	1.226	_	20.5	_
$[QI^{A} \cdot 1 \cdot QI^{B}]$	0.460	0.433	7.6	7.1

Figure S33. Overlayed images of $1 \cdot QF(a) 1 \cdot QCl(b)$, $1 \cdot QBr(c)$ and $1 \cdot QI(d)$ in X-ray (green) and optimized bimolecular (blue) geometries.

Figure S34. Overlayed images of $1 \cdot QF$ (a) $1 \cdot QCl$ (b), $1 \cdot QBr$ (c) and $1 \cdot QI$ (d) in X-ray (green) and optimized trimolecular model (purple) geometries.

Figure S35. Overlayed images of the optimized and experimental X-ray geometries of $1 \cdot QF$ (an octa-molecular cluster bearing 6 molecules of 1 and 2 molecules of QF).

Figure S36. Projections of Pt centers (in blue) onto the mean-square planes of the closest QX rings in the cocrystals from the XRD data (top panel) and in the optimization of dimeric adducts (bottom panel) [**1**·QX].

Figure S37. The δG^{atom} colored [1·QX] structures.

Structure	Contact	<i>d</i> (X⋯Y), Å	$\Sigma^{Alvarez}_{Wdv}$ (X…Y), Å	R _r	QX–square plane angle, ⁰	d1, Å	d2, Å	d3, Å	<i>r</i> , Å	α, °
				1	X-ray			1	I	I
	Pt1…C1D	3.320(3)	4.06	0.82						
	Pt1…C2D	3.426(3)	4.06	0.84	-	3.6366(13)		3 3522(17)	1.578	
	Pt1…C3D	4.002(3)	4.06	0.99	-					
	Pt1…C4D	4.421(3)	4.06	1.09	-					
	Pt1…C5D	4.308(3)	4.06	1.06	4.62(15)					
	Pt1…C6D	3.837(3)	4.06	0.95			2 27((2)			25.7
	C18…O2D	3.326(5)	3.27	0.99			5.270(2)	5.5522(17)		23.7
1·QF	O1···C4D	3.262(4)	3.27	1.00						
	N1…C2D	3.615(4)	3.43	1.05	-					
	C12…F2D	3.205(4)	3.23	0.99	-					
	C13…F1D	3.386(3)	3.23	1.05	-					
-	C14…F3D	3.531(4)	3.23	1.09	-					
		1		1	Optimize	d	1	1	1	1
	Pt1…C1D	3.323	4.06	0.82	5.42	3.396	3.269	3.542	0.920	15.7
	Pt1…C2D	3.632	4.06	0.89						

 Table S7. Geometrical parameters of the observed noncovalent interactions in the crystal and optimized structures.

	Pt1…C3D	3.966	4.06	0.98						
	Pt1…C4D	4.025	4.06	0.99						
	Pt1…C5D	3.739	4.06	0.92						
	Pt1…C6D	3.369	4.06	0.83						
	C18…O2D	3.161	3.27	0.97						
	O1…C4D	3.075	3.27	0.94						
	N1…C2D	3.255	3.43	0.95						
	C12…F2D	3.289	3.23	1.02						
	C13…F1D	3.204	3.23	0.99						
	C14…F3D	3.282	3.23	1.02						
					X-ray	I				
	Pt1…C1D	3.504(9)	4.06	0.86						
	Pt1…C2D	3.634(10)	4.06	0.90						
	Pt1…C3D	4.071(9)	4.06	1.00						
1·QCl	Pt1…C4D	4.328(10)	4.06	1.06	5 45(41)	2 627(4)	2 440(6)	2.806(5)	1 222	18.0
	Pt1…C5D	4.079(8)	4.06	1.00	5.45(41)	5.027(4)	5.449(0)	5.890(3)	1.222	18.0
	Pt1…C6D	3.735(10)	4.06	0.92						
	C18···Cl3D	3.347(9)	3.59	0.93						
	C13···Cl2D	3.542(10)	3.59	0.99						
				1		1	1	1	1	1

	C6…Cl1D	3.569(9)	3.59	0.99						
	N1…Cl2D	3.915(9)	3.48	1.13						
	C7…Cl2D	4.142(10)	3.59	1.15						
	S2…C6D	3.987(11)	3.66	1.09						
		I		I	Optimized	1	I	1	I	I
	Pt1…C1D	3.798	4.06	0.94						
	Pt1…C2D	3.651	4.06	0.90						
	Pt1…C3D	3.562	4.06	0.88						
	Pt1…C4D	3.612	4.06	0.89						
	Pt1…C5D	3.837	4.06	0.95						
	Pt1…C6D	3.914	4.06	0.96	1.58	3 1/13	3 /12	3 603	0.461	77
	C18····Cl3D	3.480	3.59	0.97	1.56	5.445	5.412	5.095	0.401	7.7
	C13···Cl2D	3.606	3.59	1.01						
	C6…Cl1D	3.658	3.59	1.02						
	N1…Cl2D	3.492	3.48	1.00						
	C7…Cl2D	3.583	3.59	0.99						
	S2…C6D	3.515	3.66	0.96						
1.OBr		1		1	X-ray	1	1	1	1	1
1 201	Pt1…C1D	3.896(8)	4.06	0.96	1.81(25)	3.467(3)	3.450(3)	4.006(4)	0.342	5.7

Pt1…C2D	3.850(8)	4.06	0.95						
Pt1…C3D	3.727(9)	4.06	0.92						
Pt1…C4D	3.644(9)	4.06	1.63						
Pt1…C5D	3.648(8)	4.06	0.90	-					
Pt1…C6D	3.752(7)	4.06	0.92	-					
C2···O2D	3.994(10)	3.27	1.22	-					
C12…O1D	3.300(11)	3.27	1.01	-					
N1…Br1D	3.839(7)	3.52	1.09						
N2…Br4D	3.873(7)	3.52	1.10						
C13…Br1D	3.974(8)	3.63	1.09						
C7…Br1D	3.615(8)	3.63	0.99						
C1…Br2D	3.748(8)	3.63	1.03						
C18…Br4D	3.843(9)	3.63	1.06						
S2…Br3D	3.8814(18)	3.75	1.03						
S2…C4D	3.840(9)	3.66	1.05						
	I		1	Optimized	l	I		I	
Pt1…C1D	3.652	4.06	0.90						
Pt1…C2D	3.600	4.06	0.87	0.60	3.470	3.438	3.718	0.463	7.8
Pt1…C3D	3.663	4.06	0.90						

	Pt1…C4D	3.785	4.06	0.93						
	Pt1…C5D	3.937	4.06	0.97						
	Pt1…C6D	3.885	4.06	0.96						
	C2···O2D	3.697	3.27	1.13						
	C12…O1D	3.567	3.27	1.09						
	N1…Br1D	3.612	3.52	1.03						
	N2…Br4D	3.599	3.52	1.02						
	C13···Br1D	3.646	3.63	1.00						
	C7…Br1D	3.742	3.63	1.03						
	C1…Br2D	3.713	3.63	1.02						
	C18···Br4D	3.586	3.63	0.99						
	S2…Br3D	3.884	3.75	1.04						
	S2…C4D	3.684	3.66	1.01						
		I			X-ray	I	I	<u> </u>	I	<u> </u>
	Pt1…C1D	4.698(12)	4.06	1.16						
1.01	Pt1…C2D	4.206(11)	4.06	1.04						
I'QI	Pt1…C3D	3.717(10)	4.06	0.92	3.1(3)	3.928(4)	3.602(8)	4.392(6)	1.566	23.5
	Pt1…C4D	3.707(11)	4.06	0.91						
	Pt1…C5D	4.103(10)	4.06	1.01						

Pt1…C6D	4.561(11)	4.06	1.12						
C12…O1D	3.753(15)	3.27	1.15						
C13…O1D	4.285(15)	3.27	1.31						
C7…I1D	4.082(11)	3.81	1.07						
C18…I4D	4.614(12)	3.81	1.21						
C3…I2D	4.304(11)	3.81	1.13						
C14…I3D	3.672(11)	3.81	0.96						
C15…I3D	3.869(12)	3.81	1.02						
H12…I4D	4.1904(7)	3.24	1.29						
S1…I1D	3.946(3)	3.93	1.00						
S2…I3D	4.427(3)	3.93	1.13						
I	I I		1 1	Optimized	l				
Pt1…C1D	3.862	4.06	0.95						
Pt1…C2D	3.879	4.06	0.96	2 (2					
Pt1…C3D	3.764	4.06	0.93	5.02					
Pt1…C4D	3.636	4.06	0.90		3.497	3.275	4.145	1.226	20.5
Pt1…C5D	3.703	4.06	0.91						
Pt1…C6D	3.794	4.06	0.93						
C12…O1D	3.279	3.27	1.00						

C13…O1D	3.447	3.27	1.05
O1…I4D	3.764	3.54	1.06
C7…I1D	3.839	3.81	1.10
C18…I4D	3.898	3.81	1.02
C3…I2D	3.916	3.81	1.03
C14…I3D	3.694	3.81	0.97
C15…I3D	3.902	3.81	1.02
H12…I4D	3.688	3.24	1.14
S1…I1D	3.934	3.93	1.00
S2…I3D	4.098	3.93	1.04

S5. CARTESIAN COORDINATES FOR THE STUDIED MOLECULES

Optimized geometries

Cartesian coordinate for $[1 \cdot QF]$ (in Å)

Pt	0.000000	2.100980	0.000000
S	4.086866	3.926284	0.052870
S	-2.233801	1.874314	0.003797
0	0.000000	0.000000	0.000000
N	2.029577	2.399726	-0.048736
N	-1.197814	-0.576811	0.026121
С	2.384449	3.664884	0.063313
С	1.344083	4.642106	0.164002
С	3.072230	0.168600	-0.320241
Н	2.118317	-0.339845	-0.361132
С	0.050459	4.072862	0.115987
С	5.492746	0.156639	-0.360142
Η	6.416124	-0.404715	-0.433046
С	3.110426	1.550918	-0.169660
С	4.269470	-0.513134	-0.412315
Η	4.257994	-1.590405	-0.524787
С	1.555854	6.012719	0.295268
Н	2.565369	6.409225	0.335283
С	-1.217789	-1.925709	0.076979
Н	-0.239499	-2.381110	0.103831
С	-3.554567	-0.523483	0.054004
Н	-4.458619	0.070805	0.052211
С	5.542727	1.531116	-0.218541
Н	6.490080	2.054084	-0.180658
С	4.342858	2.218782	-0.125709
С	0.470415	6.858858	0.378519
Н	0.615167	7.926860	0.483432
С	-2.397330	-2.610909	0.111181
Н	-2.377908	-3.690320	0.159490
С	-0.813889	6.324097	0.329695
Н	-1.670110	6.986405	0.396964
С	-1.021265	4.959421	0.201948
Н	-2.039050	4.587437	0.176058
С	-2.333923	0.162341	0.024045
С	-3.595034	-1.892251	0.096059

Н	-4.546301	-2.408235	0.124874
F	3.037774	1.969246	3.006076
F	-1.968869	-0.231592	3.261444
F	2.718578	-0.745130	2.819054
F	-1.652709	2.480740	3.449229
0	0.853583	3.487544	3.425596
0	0.224057	-1.749962	2.884222
С	-0.783571	0.345458	3.207013
С	1.853594	1.397440	3.043418
С	0.363642	-0.555132	3.002417
С	-0.636537	1.670718	3.280731
С	1.698835	0.075339	2.956006
С	0.702375	2.307510	3.241357

Cartesian coordinate for [1·QCl] (in Å)

Pt	0.000000	0.000000	0.000000
S	0.000000	2.242416	0.000000
S	1.431305	-4.242444	0.034989
Ν	0.098885	-2.051497	0.001737
С	2.406759	-1.580268	0.036161
0	-2.082756	0.207406	-0.020784
С	-3.023746	-4.013255	-0.172229
Η	-4.099145	-3.902756	-0.240054
С	1.960489	-0.238289	0.004865
С	3.756952	-1.922414	0.025685
Η	4.057690	-2.965160	0.046596
С	-1.690830	2.511211	-0.069275
С	1.328862	-2.522594	0.035731
Ν	-2.536742	1.451406	-0.063032
С	4.295064	0.405709	-0.057970
Η	5.038220	1.194140	-0.104186
С	-4.443259	2.845487	-0.178552
Η	-5.519941	2.931534	-0.220004
С	-3.876642	1.605361	-0.113304
Η	-4.425602	0.675494	-0.107701
С	-2.253095	3.792336	-0.141075
Η	-1.571517	4.632414	-0.155366
С	2.950662	0.742587	-0.043518
Η	2.677754	1.790799	-0.084376
С	4.707142	-0.923534	-0.021226

Η	5.761491	-1.170534	-0.033400
С	-2.468612	-5.293908	-0.146767
Н	-3.115981	-6.161289	-0.188764
С	-0.852552	-3.049816	-0.043939
С	-2.231295	-2.884347	-0.121088
Н	-2.649204	-1.887805	-0.153476
С	-0.300683	-4.339017	-0.028381
С	-3.610642	3.967521	-0.195674
Н	-4.030322	4.963690	-0.253651
С	-1.099537	-5.471049	-0.076059
Н	-0.664437	-6.462532	-0.063091
Cl	-0.603880	3.467238	-3.554001
Cl	2.834988	-0.677783	-3.482489
Cl	0.381876	-2.712108	-3.415147
С	1.006645	1.302710	-3.422133
С	0.184524	-1.023545	-3.407335
0	1.930137	2.071738	-3.407403
С	-1.431923	0.926277	-3.437632
Cl	-3.056165	1.432809	-3.490980
С	1.217890	-0.170191	-3.438181
С	-1.220958	-0.543735	-3.356245
0	-2.147632	-1.307172	-3.278489
С	-0.402864	1.782840	-3.461281

Cartesian coordinate for $[1 \cdot QBr]$ (in Å)

Pt	0.000000	0.000000	0.000000
S	-0.082223	-4.244611	1.423191
S	0.000000	2.242416	0.000000
0	0.009144	0.207190	-2.081960
N	0.022140	1.451162	-2.537369
С	0.140254	-2.881619	-2.234108
Η	0.188127	-1.884798	-2.649872
N	-0.010682	-2.051597	0.095421
С	0.075678	3.792931	-2.256016
Η	0.095512	4.633445	-1.575230
С	0.033589	2.511268	-1.691849
С	0.033038	0.736838	2.952513
Η	0.091233	1.784785	2.681918
С	0.035149	1.604899	-3.878040
Н	0.028042	0.674595	-4.426218

С	0.026038	0.397398	4.296251
Η	0.073727	1.183717	5.041547
С	0.002699	-4.338701	-0.307932
С	-0.081478	-1.928664	3.752940
Η	-0.119727	-2.971605	4.051331
С	-0.069039	-1.584056	2.403405
С	-0.064283	-2.524525	1.324008
С	-0.016079	-0.241648	1.959890
С	0.038006	-3.048750	-0.857200
С	0.197308	-4.009829	-3.027348
Η	0.285737	-3.897772	-4.101086
С	0.055784	-5.469840	-1.107692
Η	0.027841	-6.461833	-0.674386
С	0.152183	-5.291125	-2.475071
Н	0.199399	-6.157800	-3.123055
С	0.091300	3.967995	-3.614615
Η	0.123897	4.964737	-4.035658
С	-0.034186	-0.931985	4.705470
Η	-0.039814	-1.180745	5.759493
С	0.066548	2.845654	-4.446406
Η	0.076732	2.931829	-5.523835
Br	3.556769	1.588478	-3.201738
Br	3.505128	-2.866049	0.254333
Br	3.525186	-0.785769	2.934757
Br	3.574633	3.669181	-0.522700
0	3.352798	2.027248	1.959647
0	3.294546	-1.216809	-2.224176
С	3.411583	1.289524	1.012695
С	3.470911	0.993149	-1.436075
С	3.473175	1.815218	-0.381566
С	3.454822	-1.008696	0.116156
С	3.387662	-0.484469	-1.273984
С	3.464724	-0.190412	1.175415

Cartesian coordinate for $[1 \cdot QI]$ (in Å)

Pt	0.000000	0.000000	0.000000
s	2.225312	0.222252	0.154052
s	-4.020781	-1.834305	-0.711511
0	0.000000	2.093451	0.000000
N	1.191710	2.668446	0.075137

С	-0.041593	-1.973283	-0.025669
С	-3.086065	1.934315	-0.254518
Н	-2.156535	2.446224	-0.046708
N	-2.020520	-0.302116	-0.232803
С	-0.441441	-4.774483	-0.126978
Н	-0.579770	-5.848089	-0.160119
С	-1.317084	-2.549990	-0.234994
С	2.327485	1.931059	0.141292
С	-1.519013	-3.927470	-0.283164
Н	-2.515503	-4.329335	-0.436273
С	1.021805	-2.862489	0.129861
Н	2.023363	-2.486802	0.304716
С	0.825011	-4.233362	0.077752
Н	1.674138	-4.895692	0.206861
С	3.546029	2.618938	0.216276
Н	4.448104	2.023872	0.268819
С	1.212616	4.018370	0.092247
Н	0.234400	4.471715	0.038747
С	-5.471823	1.939122	-0.663487
Н	-6.392722	2.499098	-0.770854
С	-2.352853	-1.570352	-0.371321
С	-4.278003	2.613629	-0.402343
Н	-4.288376	3.692447	-0.305988
С	2.388802	4.706199	0.170124
Η	2.368831	5.786777	0.181592
С	-4.301584	-0.123477	-0.631580
С	-5.496911	0.562158	-0.781726
Н	-6.421938	0.035494	-0.980085
С	-3.099056	0.548376	-0.369149
С	3.586199	3.987928	0.232055
Н	4.535426	4.505020	0.292720
I	-0.484970	-3.296450	3.647330
Ι	-1.050499	3.680409	3.247471
I	-3.738644	-1.634889	3.207491
I	2.198353	2.031927	3.831217
0	1.596054	-1.000171	3.699784
0	-3.083644	1.376282	2.976745
С	-0.772285	1.625285	3.340161
С	0.528168	-0.462297	3.567299
С	-2.025805	0.835342	3.180187
С	-1.919849	-0.643085	3.308700

- C -0.736177 -1.249738 3.473023
- C 0.409291 1.027218 3.534181

Cartesian coordinate for $[1 \cdot (QF)_2]$ (in Å)

Pt	0.000000	0.000000	0.000000
S	0.000000	2.246287	0.000000
S	-1.393005	-4.242669	-0.270894
0	2.068810	0.205188	0.222859
Ν	-0.101068	-2.048634	0.017122
Ν	2.517121	1.452530	0.334522
С	-1.936376	-0.239548	-0.304878
С	-1.303472	-2.525572	-0.247948
С	-2.366551	-1.583501	-0.426478
С	2.163567	-2.868012	0.596430
Η	2.559758	-1.869332	0.719855
С	-2.916654	0.742589	-0.436186
Н	-2.652616	1.790650	-0.354758
С	0.827970	-3.041929	0.251277
С	2.939520	-3.993869	0.784332
Η	3.982087	-3.879694	1.054382
С	1.676283	2.511038	0.255995
С	2.230182	3.790994	0.373566
Н	1.554547	4.633699	0.312369
С	0.294503	-4.332053	0.121773
С	-4.241792	0.404784	-0.660317
Η	-4.983336	1.191395	-0.740940
С	3.847758	1.600633	0.502849
Η	4.396661	0.671436	0.521904
С	-3.696700	-1.924132	-0.661923
Η	-3.989140	-2.965685	-0.743489
С	1.077306	-5.460122	0.309362
Η	0.659827	-6.453642	0.205438
С	2.407160	-5.276045	0.638602
Н	3.041207	-6.140580	0.792129
С	-4.639006	-0.924363	-0.774514
Н	-5.679621	-1.170653	-0.942269
С	3.577750	3.961994	0.554883
Н	3.992766	4.957901	0.643691
С	4.406752	2.840160	0.618758
Н	5.476095	2.925205	0.749551
F	1.097726	-3.183234	-2.889538
F	3.635009	-2.299697	-2.341326
F	2.222709	2.173410	-2.981645

F	-0.316664	1.293543	-3.519465
0	-0.786653	-1.363483	-3.498083
0	4.103319	0.348451	-2.371136
С	1.413150	-1.906365	-2.885597
С	2.648167	-1.477126	-2.621917
С	1.903972	0.894987	-2.982475
С	2.988928	-0.038484	-2.630564
С	0.661425	0.471982	-3.227315
С	0.316043	-0.969607	-3.216956
F	-3.368830	-2.934058	2.636233
F	-0.706178	-3.291999	3.145743
F	-0.125696	1.401791	3.416614
F	-2.788591	1.762764	2.889842
0	-4.344916	-0.423479	2.595836
0	0.831134	-1.115308	3.535473
С	-2.550698	-1.920561	2.824533
С	-1.251406	-2.095285	3.073521
С	-0.944238	0.393740	3.213459
С	-0.338441	-0.953154	3.290201
С	-2.245881	0.567855	2.970300
С	-3.161416	-0.573692	2.768861

Cartesian coordinate for $[1 \cdot (QCl)_2]$ (in Å)

Pt	-0.003009	-0.001594	-0.009122
S	-2.230494	-0.262501	0.025764
s	4.038342	1.912517	-0.209882
Ν	2.023543	0.334704	-0.077184
С	1.286375	2.572026	-0.045586
0	0.036837	-2.091278	-0.009053
С	4.329906	-2.542859	-0.240625
Н	4.345313	-3.625681	-0.252262
С	0.005324	1.974510	-0.006251
С	1.467687	3.952466	-0.045671
Н	2.467823	4.372988	-0.073242
С	-2.297440	-1.975216	0.012244
С	2.347775	1.611976	-0.099875
N	-1.146485	-2.689468	0.008541
С	-0.908608	4.215842	0.019637
Н	-1.779150	4.861856	0.041884
С	-2.305295	-4.748382	0.020183

Η	-2.265015	-5.828474	0.025659
С	-1.139489	-4.038665	0.016585
Н	-0.150760	-4.472138	0.010724
С	-3.504394	-2.684620	0.009439
Н	-4.419171	-2.107150	0.006514
С	-1.085596	2.841052	0.024209
Η	-2.094816	2.446951	0.050896
С	0.363590	4.779266	-0.012409
Η	0.485707	5.855311	-0.012845
С	5.534517	-1.841192	-0.308695
Η	6.469607	-2.384288	-0.370211
С	3.123450	-0.496969	-0.147597
С	3.118968	-1.886970	-0.159387
Н	2.181105	-2.421438	-0.109147
С	4.336192	0.202336	-0.220765
С	-3.517693	-4.054536	0.014301
Η	-4.458208	-4.590507	0.012248
С	5.551529	-0.459225	-0.300789
Η	6.483668	0.088931	-0.355538
Cl	-3.487930	-1.059031	-3.439367
Cl	0.308197	2.761237	-3.521853
Cl	2.569486	0.513390	-3.517721
С	-1.484792	0.752449	-3.393722
С	0.909236	0.155970	-3.450284
0	-2.337633	1.598588	-3.366381
С	-0.876936	-1.639569	-3.395335
Cl	-1.227463	-3.305368	-3.407734
С	-0.039801	1.103019	-3.455536
С	0.567810	-1.287886	-3.363651
0	1.418630	-2.135262	-3.289989
С	-1.828550	-0.697157	-3.402906
Cl	-2.540654	-1.779121	3.541520
Cl	0.063439	2.938513	3.549782
Cl	2.845190	1.400216	3.311860
С	-1.116241	0.514192	3.478969
С	1.345314	0.601151	3.341861
0	-2.167049	1.091305	3.561283
С	0.119478	-1.616402	3.313695
Cl	0.239754	-3.311594	3.247226
С	0.177073	1.250082	3.446011
С	1.408135	-0.878627	3.227697

- O 2.454086 -1.456861 3.088854
- C -1.048737 -0.973030 3.434890

Cartesian coordinate for $[1 \cdot (QBr)_2]$ (in Å)

Pt	0.033934	2.449488	-0.026550
s	-3.999926	4.336122	-0.481744
s	2.232419	2.192656	0.326261
0	0.039937	0.376405	-0.283050
N	1.219467	-0.215883	-0.158757
С	-3.021970	0.555639	-0.636824
Н	-2.086582	0.028002	-0.516455
N	-1.972075	2.778229	-0.326353
С	3.538494	-0.211386	0.267385
Н	4.423449	0.359832	0.513643
С	2.334944	0.492940	0.139165
С	1.029086	5.268295	0.532862
Н	2.025917	4.874305	0.692704
С	1.247489	-1.549935	-0.353469
Η	0.285850	-1.979413	-0.591074
С	0.822692	6.631852	0.671378
Η	1.659250	7.269992	0.933600
С	-4.261195	2.632869	-0.677721
С	-1.498253	6.376683	0.153413
Н	-2.487963	6.796082	0.004417
С	-1.290364	5.005669	0.025494
С	-2.319244	4.048875	-0.255298
С	-0.019117	4.410688	0.203462
С	-3.047435	1.942872	-0.551022
С	-4.211678	-0.106203	-0.860470
Η	-4.212066	-1.187380	-0.925422
С	-5.453925	1.965790	-0.907781
Η	-6.386162	2.506578	-1.011089
С	-5.414870	0.587380	-1.000412
Н	-6.332537	0.040475	-1.179172
С	3.586472	-1.567278	0.077493
Η	4.524437	-2.098605	0.176560
С	-0.435475	7.194454	0.478387
Η	-0.579784	8.262498	0.584302
С	2.412705	-2.252931	-0.245409
Н	2.400933	-3.321422	-0.408014

Br	-1.045516	-0.033036	-3.806495
Br	-2.169361	5.496874	-3.692241
Br	1.102768	6.151239	-3.125161
Br	2.258923	0.636891	-3.422184
0	2.605576	3.575970	-3.095147
0	-2.553089	2.537393	-3.746820
С	1.436882	3.341941	-3.247687
С	-0.363053	1.687146	-3.599752
С	0.937595	1.949991	-3.430242
С	-0.872594	4.168924	-3.520906
С	-1.378611	2.775661	-3.630212
С	0.422851	4.432354	-3.310321
Br	0.764847	-1.399341	3.207648
Br	-3.299280	2.504090	3.016314
Br	-1.019686	4.913523	3.726825
Br	3.044960	1.008425	3.925916
0	1.685651	3.663028	3.844444
0	-1.865917	-0.093127	2.693088
С	0.867712	2.804805	3.647496
С	0.349908	0.416911	3.298849
С	1.251135	1.365046	3.576759
С	-1.477854	2.169482	3.217993
С	-1.075613	0.750190	3.028014
С	-0.580510	3.121795	3.501105

Cartesian coordinate for $[1 \cdot (QI)_2]$ (in Å)

Pt	0.311453	-0.391877	-0.082367
S	-1.916454	-0.177342	-0.228514
S	4.406378	-2.192679	-0.034014
0	0.269467	1.642623	0.388114
N	-0.930699	2.204358	0.419263
С	0.398019	-2.318207	-0.512802
С	3.350366	1.532307	0.496570
Η	2.398637	2.042894	0.462594
N	2.340025	-0.680257	0.030129
С	0.864023	-5.052508	-1.069362
Η	1.027415	-6.101324	-1.284249
С	1.693587	-2.884847	-0.487493
С	-2.049236	1.492000	0.136739
С	1.927237	-4.230235	-0.758165

Η	2.937276	-4.626156	-0.727005
С	-0.650335	-3.178834	-0.836581
Н	-1.666733	-2.805800	-0.884728
С	-0.420347	-4.518179	-1.109887
Н	-1.258396	-5.158379	-1.362024
С	-3.275057	2.167665	0.161105
Н	-4.161860	1.593467	-0.070490
С	-0.977452	3.512681	0.743290
Н	-0.012059	3.948435	0.951041
С	5.757803	1.534640	0.747944
Н	6.670137	2.089244	0.930222
С	2.712720	-1.927588	-0.174410
С	4.533596	2.204891	0.722303
Н	4.511943	3.276564	0.878064
С	-2.164651	4.185953	0.783671
Н	-2.166062	5.234389	1.046409
С	4.637327	-0.507078	0.304778
С	5.823995	0.170289	0.536344
Н	6.772455	-0.351821	0.549046
С	3.403780	0.158799	0.290495
С	-3.341346	3.498768	0.479277
Н	-4.296586	4.007684	0.495991
I	-1.573735	-4.117777	2.856770
Ι	1.340959	2.174038	3.888307
Ι	2.072562	-3.693505	3.152311
Ι	-2.320201	1.695142	3.943453
0	-2.747429	-1.276739	3.220663
0	2.506877	-0.627549	3.300579
С	0.386054	0.361418	3.565935
С	-1.553120	-1.141998	3.293273
С	1.313573	-0.787221	3.344367
С	0.702334	-2.139865	3.214290
С	-0.626692	-2.300321	3.147637
С	-0.941456	0.190223	3.571186
Ι	1.188817	-2.655230	-4.276812
Ι	-0.821050	3.914597	-2.947589
I	3.620253	-0.004450	-3.451991
Ι	-3.262956	1.255961	-3.721705
0	-1.589865	-1.351526	-3.838386
0	1.882926	2.430709	-2.627694
С	-0.338960	1.913093	-3.211166

- C -0.789339 -0.465606 -3.689635
- C 1.110567 1.604471 -3.042607
- C 1.561171 0.241664 -3.440189
- C 0.679885 -0.722735 -3.739518
- C -1.224955 0.950156 -3.493608

Cartesian coordinate for 1 (in Å)

Pt	2.141438669	5.440252825	5.475395509
S	1.662350368	3.539538592	6.563184049
S	4.316401298	9.087482667	4.055496974
0	0.239739306	5.195750783	4.638125659
N	-0.413882123	4.103800437	5.003306375
N	2.658388253	7.186326682	4.528810266
С	4.633437952	6.849391596	5.767610541
С	-1.626749834	3.905464264	4.443366076
Н	-1.920641463	4.678724234	3.749034543
С	2.300730266	10.061224984	2.349045166
Н	2.900656368	10.915764459	2.061863997
С	3.949941860	5.695412972	6.218995332
С	-1.876064357	1.883360732	5.669762815
Н	-2.448665637	1.003626602	5.934801354
С	-0.644408019	2.099663536	6.228247239
Н	-0.215802559	1.405920619	6.939480771
С	4.642260383	4.882867037	7.118260795
Н	4.179216956	3.980386612	7.500868286
С	1.032884309	9.874200541	1.830918243
Н	0.634065664	10.593934844	1.126510150
С	3.861920858	7.621049501	4.842064368
С	0.116200562	3.229982648	5.896782988
С	0.264335258	8.770410149	2.204759552
Н	-0.726150466	8.647290224	1.783295307
С	0.739510074	7.832329125	3.099931866
Н	0.153595583	6.973280581	3.397612277
С	2.780862187	9.121186543	3.247778574
С	-2.380459366	2.810561403	4.753022801
Н	-3.345589972	2.684226185	4.282968835
С	2.014656165	8.009456365	3.628228329
С	5.923255046	5.202875876	7.538681561
Н	6.431028161	4.547773697	8.238432023
С	5.921605021	7.175151685	6.188554979

Η	6.409439405	8.070578296	5.816109535
С	6.570821548	6.347651747	7.080053800

Cartesian coordinate for QF (in Å)

F	1.032450000	5.806982000	-1.522971000
F	1.151448000	3.610013000	0.111953000
0	3.147063000	7.473305000	-1.582492000
С	2.078169000	5.544312000	-0.773473000
С	2.136010000	4.474233000	0.023096000
С	3.198389000	6.509283000	-0.863335000
F	5.488856000	4.894609000	1.522959000
F	5.369858000	7.091578000	-0.111965000
0	3.374245000	3.228285000	1.582477000
С	4.443129000	5.157291000	0.773477000
С	4.385288000	6.227370000	-0.023092000
С	3.322895000	4.192339000	0.863366000

Cartesian coordinate for QCl (in Å)

Cl	1.274016000	7.477191000	2.239551000
Cl	3.541111000	5.305604000	1.668837000
Cl	-2.514914000	3.723196000	1.471937000
Cl	-0.247824000	1.551460000	0.901968000
0	-1.369529000	6.317605000	2.045279000
0	2.395764000	2.710882000	1.096793000
С	1.882684000	4.942805000	1.631602000
С	0.929704000	5.855572000	1.871561000
С	-0.515371000	5.499433000	1.829870000
С	1.541613000	3.529139000	1.311779000
С	-0.856444000	4.085929000	1.509634000
С	0.096486000	3.173041000	1.269902000

Cartesian coordinate for QBr (in Å)

Br	1.290986000	7.636166000	2.275684000
Br	3.703714000	5.325254000	1.668806000
Br	-2.677555000	3.703492000	1.471959000
Br	-0.264657000	1.392580000	0.865446000
0	-1.370163000	6.317920000	2.045192000
0	2.396351000	2.710642000	1.096634000

С	1.882289000	4.943974000	1.631944000
С	0.930792000	5.855302000	1.871627000
С	-0.515768000	5.499625000	1.830222000
С	1.541959000	3.528906000	1.311836000
С	-0.856085000	4.084665000	1.509447000
С	0.095432000	3.173330000	1.269915000

Cartesian coordinate for QI (in Å)

I	11.34789831724660	-1.51945984134358	9.27608749240645
Ι	5.18415393181739	-4.83124322234611	8.74637706517489
Ι	9.51337464524704	-2.69146625330675	12.25469596693273
I	7.02147755503089	-3.66391253692769	5.76750176345664
0	9.58602154491685	-2.33888640554971	6.87186980466656
0	6.94648151045126	-4.01269425730527	11.15050487518255
С	7.00781011589777	-3.84612892327232	8.80272810943721
С	8.98622438107133	-2.71901738107558	7.84437360722771
С	8.85792825234695	-2.93117085985107	10.30219901031118
С	7.54683263484628	-3.63317705179889	10.17808567653792
С	7.67552462938688	-3.42208804283625	7.72023018144272
С	9.52497248174071	-2.50605522438677	9.21964644722342

References

- 1. B. E. G. Lucier, A. R. Reidel and R. W. Schurko, Multinuclear solid-state NMR of squareplanar platinum complexes — Cisplatin and related systems, *Canadian Journal of Chemistry*, 2011, **89**, 919-937.
- 2. M.-H. Thibault, B. E. G. Lucier, R. W. Schurko and F.-G. Fontaine, Synthesis and solidstate characterization of platinum complexes with hexadentate amino- and iminophosphine ligands, *Dalton Transactions*, 2009, DOI: 10.1039/B907737E, 7701-7716.
- 3. B. A. Demko and R. E. Wasylishen, Comparing Main Group and Transition-Metal Square-Planar Complexes of the Diselenoimidodiphosphinate Anion: A Solid-State NMR Investigation of M[N(iPr2PSe)2]2 (M = Se, Te; Pd, Pt), *Inorganic Chemistry*, 2008, 47, 2786-2797.
- 4. E. Kuzniak, J. Hooper, M. Srebro-Hooper, J. Kobylarczyk, M. Dziurka, B. Musielak, D. Pinkowicz, J. Raya, S. Ferlay and R. Podgajny, A concerted evolution of supramolecular interactions in a {cation; metal complex; π -acid; solvent} anion- π system, *Inorganic Chemistry Frontiers*, 2020, 7, 1851-1863.
- 5. D. Sundholm, H. Fliegl and R. J. F. Berger, Calculations of magnetically induced current densities: theory and applications, *WIREs Computational Molecular Science*, 2016, **6**, 639-678.