Electronic Supplementary Information (ESI)

Synthesis of nano-sized SAPO-34 with facile micron-meter seeds processing method and their enhanced performance in methanol-to-olefin reactions

DehuaWang,^a Minghui Mo,^b Man Xu,^a Zhijun Xia,^a Xuebin Zhao^{*c} and Beibei Gao^{*b}

^aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou

318000, Zhejiang, China.

^bGreen Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

^cTechnology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China.

*Corresponding authors, E-mail addresses: zhaoxuebin116@163.com; gaobeibei@zzu.edu.cn

Table of Contents

1. Supplementary Sample Preparation

2. Supplementary Tables

 Table S1. Percentage composition of silicon species for the synthesized SAPO-34s

3. Supplementary Figures

Fig. S1 XRD patterns of samples prepared with conventional SAPO-5 seed after MOR treatment for different time.

Fig. S2 XRD patterns of SAPO seeds.

Fig. S3 XRD patterns of samples prepared conventional DNL-6 (**RHO**), SAPO-35 (**LEV**) and SAPO-56 (**AFX**) seed after MOR treatment for 30 h. The mass fraction of seeds is fixed at 4%.

Fig. S4 SEM images of samples prepared with conventional DNL-6 (**RHO**) seed (a) SAPO-35 (**LEV**) seed (b) and SAPO-56 (**AFX**) seed (c) after MOR treatment for 30 h. The mass fraction of seeds is fixed at 4%.

4. References

1. Supplementary Sample Preparation

Conventional SAPO-5 (AFI) preparation: Conventional SAPO-5 molecular sieve was synthesized by hydrothermal synthesis with the gel molar ratio of 1.00TEA: $1.00Al_2O_3$: $1.00P_2O_5$: $0.50SiO_2$: $50.00H_2O$. The detailed synthesis steps are the same with that of SAPO-34-M preparation except that the silicon source is tetraethylorthosilicate (TEOS) instead of silica sol and the synthesis condition is under static.

Conventional SAPO-35 (LEV) preparation: SAPO-35 was hydrothermally synthesized from a gel composition of 1.35hexamethylenimine (HMI): $0.6SiO_2$:1.0 Al₂O₃: $0.96 P_2O_5$:55H₂O. The detailed synthesis steps are the same with Ref. 1.¹

Conventional SAPO-56 (AFX) preparation: SAPO-56 was hydrothermally synthesized from a gel composition of 2.0 N,N,N',N'-tetramethyl-1,6-hexanediamine (TMHDA): $0.6SiO_2:0.8 Al_2O_3:1.0P_2O_5:55H_2O$. The detailed synthesis steps are the same with Ref. 2.³

Conventional DNL-6 (RHO) preparation: DNL-6 was hydrothermally synthesized from a gel composition of 2.0diethylamine (DEA): $0.4SiO_2:1.0Al_2O_3:0.8$ P₂O₅: $0.2CTAB:100H_2O$. The detailed synthesis steps are the same with Ref. 3.³

2. Supplementary Tables

Table S1 Percentage composition of silicon species for the synthesized SAPO-34s

samples	

		Percentage composition of silicon species /%			
Silicon	Chemical shift	SAPO-34-	SAPO-34-T-	SAPO-34-T-	SAPO-34-T-
species	/ppm	С	2%	4%	8%
Defects	-88	10.5	4.4	3.8	3.1
Si4Al	-90	16.8	27.0	34.4	37.8
Si3Al1Si	-95	10.3	10.9	8.3	7.8
Si2Al2Si	-100	10.3	9.1	7.4	7.6
Si1Al3Si	-105	17.6	15.6	15.1	14.7
Si4Si	-111	34.5	33.0	30.0	29.0

3. Supplementary Figures

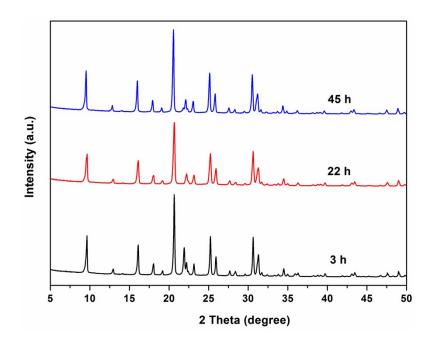


Fig. S1 XRD patterns of samples prepared with conventional SAPO-5 seed after MOR

treatment for different time.

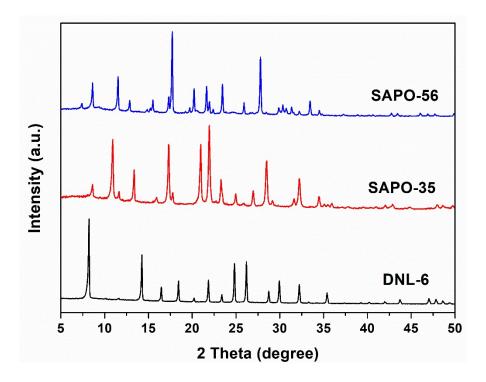
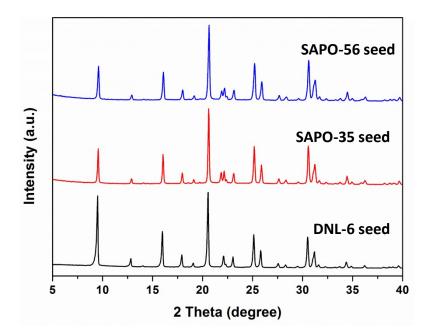



Fig. S2 XRD patterns of SAPO seeds

Fig. S3 XRD patterns of samples prepared conventional DNL-6 (**RHO**), SAPO-35 (**LEV**) and SAPO-56 (**AFX**) seed after MOR treatment for 30 h. The mass fraction of seeds is

fixed at 4%.

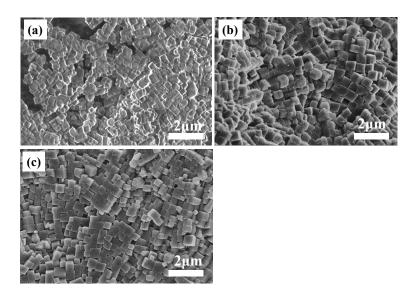


Fig. S4 SEM images of samples prepared with conventional DNL-6 (RHO) seed (a)

SAPO-35 (LEV) seed (b) and SAPO-56 (AFX) seed (c) after MOR treatment for 30 h.

The mass fraction of seeds is fixed at 4%.

4. References

- 1. P. Tian, B. Li, S. T. Xu, X. Su, D. H. Wang, L. Zhang, D. Fan, Y. Qi and Z. M. Liu, Investigation of the crystallization process of SAPO-35 and Si distribution in the crystals, *J. Phys. Chem. C*, 2013, **117**, 4048-4056.
- L. X. P. Tian, Z. M. Liu, C. L. Sun and T. Huang, Synthesis and characterization of SAPO-56, a new member of silicoaluminophosphate, *Chem. J. Chinese Universities*, 2001, **22**, 991-994.
- 3. X. Su, P. Tian, J. Z. Li, Y. Zhang, S. H. Meng, Y. L. He, D. Fan and Z. M. Liu, Synthesis and characterization of DNL-6, a new silicoaluminophosphate molecular sieve with the RHO framework, *Microporous and Mesoporous Mater.*, 2011, **1**, 911-918.