Cu₉S₅-nanowires-pinned-WS₂ Sheets on Hollow Cubic Carbon for

synergistic promotion in K-ion Battery Performance

Qingqing Huang, ^a Liyun Cao,^{*a} Yuhang Wang, ^a Jiayin Li,^{*a} Yiting Wang, ^a Shiyin Wei, ^a Shuzhuo Bai, ^a Koji Kajiyoshi,^b Yijun Liu,^c Zhenjiang Li ^d and Jianfeng Huang^{*a}

^a School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi'an, 710021, China

^b Kochi University, Research Laboratory of Hydrothermal Chemistry, Kochi 780-8520, Japan

^c Guangdong Mona Lisa Group Co. Ltd., Foshan, Guangdong 528211, PR China

^d College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.

* Corresponding authors E-mail:

caoliyun@sust.edu.cn; lijiayin@sust.edu.cn; huangjf@sust.edu.cn

Figure S1 TG/DTG curves of Cu₉S₅/C/WS₂

To analyze the content of each component in the $Cu_9S_5/C/WS_2$ sample, thermogravimetric tests were performed. Figure S1 shows the TG and DTG curves of the $Cu_9S_5/C/WS_2$ sample. The loss of mass before 200 °C is due to the evaporation of adsorbed water, the mass change from 200 to 350 °C is attributed to the residual sulfur source on the surface, and the loss of mass from 350 to 900 °C is mainly attributed to the combustion of carbon, the transformation of WS₂ to WO3, and the transformation of Cu_9S_5 to $CuO^{1,2}$.

To determine the exact content of Cu_9S_5 , the samples were etched with a nitric acid solution, and since WS₂ and C do not react with nitric acid at room temperature, the weight loss due to the volatilization of NO gas during the reaction can be used to

calculate the content of Cu_9S_5 . The chemical reaction that occurs is shown in equation (1):

$$Cu_9S_5 + 24HNO_3 \rightarrow 9Cu(NO_3) + 6NO\uparrow + 5S\downarrow + 12H_2O \tag{1}$$

By calculation, the content of Cu_9S_5 was obtained as 17.17%. The contents of WS_2 and C can be further determined based on the weight loss of Cu_9S_5 of 2.18%, the weight loss of WS_2 of 6.45%, and the mass loss in the thermogravimetric curve from 350-900 °C (18.98%). The content of C was calculated to be 14.19% and the content of WS_2 to be 68.64% in the sample. Finally, the $Cu_9S_5/C/WS_2$ sample can be obtained as 17.17% of Cu_9S_5 , 14.19% of C, and 68.64% of WS_2 .

Figure S2 TEM and SEM images of $Cu_9S_5/C/WS_2$ electrode after 150 cycles

Figure S2 shows that the structural stability is good of $Cu_9S_5/C/WS_2$ and it still maintains the cubic shape after 150 cycles.

Figure S3 TEM images at different reaction stages of $Cu_9S_5/C/WS_2$ electrode in the discharge process : (a-b) 2.1 V, (c-d) 0.3 V

Figure S2 (a) and (b) show the TEM patterns when the electrodes were discharged to 2.1 V. From the figures. It shows that the lattice spacing of WS_2 is 0.68 nm and the lattice surface of Cu_9S_5 is 0.32 nm. The lattice spacing significantly increased of WS_2 and Cu_9S_5 when compared with before discharging and charging process (WS_2 : 0.65 nm, Cu_9S_5 : 0.225 nm). It could be caused by the insertion of potassium during the discharge process. Figure (d) shows that K_2S , Cu, and W monomers appear in the structure of the electrode when discharged to 0.3 V, which confirms the occurrence of the conversion reaction of WS_2 and Cu_9S_5 during the discharge process.

References

- 1. J. Xu, S. M. Dou, X. Y. Cui, W. D. Liu, Z. C. Zhang, Y. D. Deng, W. B. Hu and Y. N. Chen, Potassium-based electrochemical energy storage devices: Development status and future prospect, *Energy Storage Mater.*, 2021, **34**, 85-106.
- D. W. Zhao, B. Pang, Y. Zhu, W. K. Cheng, K. Y. Cao, D. D. Ye, C. L. Si, G. W. Xu, C. J. Chen and H. P. Yu, A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration, *Adv. Mater.*, 2022, **34**, 11.