Supporting Information

Bifunctional electrocatalyst based on interfacial engineering of CeO₂ and NiSe₂

for boosting electrocatalytic water splitting

Xueying Wang,^{#a} Yunong Qin,^{#a} Xin Peng,^a Ling Li,^{*a} Qiancheng Zhu,^a and Wenming

Zhang*a

^a Province-Ministry Co-construction Collaborative Innovation Center of Hebei

Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Corresponding author:

E-mail: lilinghbu@163.com (L. Li), wmzhang@hbu.edu.cn (W. Zhang)

List of Contents

1. Computational Simulation Process

We have employed the first-principles^{1,2} to perform all density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE)³ formulation. We have chosen the projected augmented wave (PAW) potentials^{4,5} to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 520 eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method with a width of 0.05 eV. The electronic energy was considered selfconsistent when the energy change was smaller than 10^{-4} eV. A geometry optimization was considered convergent when the energy change was smaller than 0.05 eV Å⁻¹. The vacuum spacing in a direction perpendicular to the plane of the structure is 20 Å for the surfaces. The Brillouin zone integration is performed using 2×2×1 Monkhorst-Pack kpoint sampling for a structure. Finally, the adsorption energies (Eads) were calculated as Eads= Ead/sub -Ead -Esub, where Ead/sub, Ead, and Esub are the total energies of the optimized adsorbate/substrate system, the adsorbate in the structure, and the clean substrate, respectively. The free energy was calculated using the equation:

$$G = Eads + ZPE - TS \tag{1}$$

where G, Eads, ZPE and TS are the free energy, total energy from DFT calculations, zero point energy and entropic contributions, respectively.

2. Supplementary Figures

Figure S1. EDX plot of CeO₂-NiSe₂.

Figure S2. SEM images of (a) CeO₂-NiSe₂-500, (b) CeO₂-NiSe₂-1200, (c) CeO₂-NiSe₂-2400.

Figure S3. XPS spectrum of the CeO₂-NiSe₂ and NiSe₂. (a) Ni 2p, (b) Ce 3d.

Figure S4. (a) Ni 2p and (b) Ce 3d XPS spectrum of the CeO₂-NiSe₂ and NiSe₂ after OER stability test.

Figure S5. Chronopotentiometry measurements on the long-term stability of the CeO₂-NiSe₂ during (a) OER and (b) HER electrolysis.

Figure S6. (a)-(c) SEM images of CeO₂-NiSe₂ after OER stability test.

Figure S7. (a)-(c) TEM images of CeO₂-NiSe₂ after OER stability test.

Figure S8. HRTEM images of CeO₂-NiSe₂ after OER stability test.

Figure S9. XRD pattern of CeO₂-NiSe₂ before and after OER stability test.

Figure S10. Raman spectrum of CeO₂-NiSe₂ before and after OER stability test.

Figure S11. CVs of OER measurements in 1 M KOH at scan rates from 20 to 80 mV s⁻¹ for (a) CeO₂-NiSe₂, (b) Ni(OH)₂, (c) NiSe₂ and (d) CeO₂.

Figure S12. OER performance of CeO₂-NiSe₂ at different deposition time. (a) LSV curves of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (b) Tafel plots of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (c) Nyquist plots derived from EIS measurements of CeO₂-NiSe₂-500, CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400.

Figure S13. CVs of HER measurements in 1 M KOH at scan rates from 20 to 80 mV s⁻¹ for (a) CeO₂-NiSe₂, (b) Ni(OH)₂, (c) NiSe₂ and (d) CeO₂.

Figure S14. HER performance of CeO₂-NiSe₂ at different deposition time. (a) LSV curves of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (b) Tafel plots of

CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (c) Nyquist plots derived from EIS measurements of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400.

Figure S15. (a) Diagram of the initial structure of Ni(OH)₂ and the intermediate state of the OER with adsorbed *OH, *O, *OOH. (b) Diagram of the initial structure of Ni(OH)₂-NiSe₂ and the intermediate state of the OER with adsorbed *OH, *O, *OOH. **Figure S16.** (a, b) Differential charge densities of Ni(OH)₂ and Ni(OH)₂-NiSe₂

structures. (c, d) Density of states of $Ni(OH)_2$ and $Ni(OH)_2$ -NiSe structures.

Figure S17. HER free-energy evolutions of the Ni(OH)₂, Ni(OH)₂-NiSe₂ and CeO₂-NiSe₂ structures.

3. Supplementary Tables

Table S1. The detailed determination of cerium, nickel, selenium and oxygen elements calculated by means of ICP-MS and EA methods for CeO₂-NiSe₂.

 Table S2. Comparison of as-obtained hybrids of OER performance at large current densities.

Figure S1. EDX plot of CeO₂-NiSe₂.

Figure S2. SEM images of (a) CeO₂-NiSe₂-500, (b) CeO₂-NiSe₂-1200, (c) CeO₂-

NiSe₂-2400.

Figure S3. (a), (b) Ni 2p and Ce 3d XPS spectrum of CeO₂-NiSe₂ and NiSe₂.

Figure S4. XPS spectrum of (a) CeO₂-NiSe₂ before OER stability test and (b) CeO₂-

NiSe₂ after OER stability test.

Figure S5. Chronopotentiometry measurements on the long-term stability of the CeO₂-NiSe₂ during (a) OER and (b) HER electrolysis at a current density of 50 mA cm⁻² (percentage of voltage retained vs operation time).

Figure S6. (a)-(c) SEM images of CeO₂-NiSe₂ after OER stability test.

Figure S7. (a)-(c) TEM images of CeO₂-NiSe₂ after OER stability test.

Figure S8. HRTEM images of CeO₂-NiSe₂ after OER stability test.

Figure S9. XRD pattern of CeO₂-NiSe₂ before and after OER stability test.

Figure S10. Raman spectrum of CeO_2 -NiSe₂ before and after OER stability test.

Figure S11. CVs of OER measurements in 1 M KOH at scan rates from 20 to 80 mV

 $s^{\text{-}1}$ for (a) CeO_2-NiSe_2, (b) Ni(OH)_2, (c) NiSe_2 and (d) CeO_2.

Figure S12. OER performance of CeO₂-NiSe₂ at different deposition time. (a) LSV curves of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (b) Tafel plots of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (c) Nyquist plots derived from EIS measurements of CeO₂-NiSe₂-500, CeO₂-NiSe₂-500, CeO₂-NiSe₂-2400.

Figure S13. CVs of HER measurements in 1 M KOH at scan rates from 20 to 80 mV

s⁻¹ for (a) CeO₂-NiSe₂, (b) Ni(OH)₂, (c) NiSe₂ and (d) CeO₂.

Figure S14. HER performance of CeO₂-NiSe₂ at different deposition time. (a) LSV curves of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (b) Tafel plots of CeO₂-NiSe₂-500, CeO₂-NiSe₂-1200, CeO₂-NiSe₂-2400. (c) Nyquist plots derived from EIS measurements of CeO₂-NiSe₂-500, CeO₂-NiSe₂-500, CeO₂-NiSe₂-2400.

Figure S15. (a) Diagram of the initial structure of $Ni(OH)_2$ and the intermediate state of the OER with adsorbed *OH, *O, *OOH. (b) Diagram of the initial structure of $Ni(OH)_2$ -NiSe₂ and the intermediate state of the OER with adsorbed *OH, *O, *OOH.

Figure S16. (a, b) Differential charge densities of Ni(OH)₂ and Ni(OH)₂-NiSe₂ structures. (c, d) Density of states of Ni(OH)₂ and Ni(OH)₂-NiSe₂ structures.

Figure S17. HER free-energy evolutions of the $Ni(OH)_2$, $Ni(OH)_2$ -NiSe₂ and CeO₂-NiSe₂ structures.

Table S1. The detailed determination of cerium, nickel, selenium and oxygen elementscalculated by means of ICP-MS and EA methods for CeO_2 -NiSe₂.

Methods	Sample weight (mg)	Ce (g/kg)	Ni (g/kg)	Se (g/kg)	O (%)
ICP-MS	0.0134	89.50	202.73	493.15	-
EA	1.25	-	-	-	21.46

Catalanta	Overpotential at 50 mA	Overpotential at 100 mA	
Catalysts	cm ⁻² (mV)	cm ⁻² (mV)	
CeO ₂ -NiSe ₂	250	442	
NiSe ₂	400	547	
CeO ₂	480	637	
RuO ₂ /NF	380	522	
Ni(OH) ₂	-	-	

Table S2. Comparison of as-obtained hybrids of OER performance at large current densities.

References

 G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, *Comput. Mater. Sci.*, 1996, 6, 15–50.

2. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, *Phys. Rev. B*, 1996, **54**, 11169–11186.

3. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.

4. G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, *Phys. Rev. B*, 1999, **59**, 1758-1775.

5. P. E Blöchl, Projector Augmented-Wave Method, *Phys. Rev. B*, 1994, **50** 17953–17979.