Supporting information for

Structure and photoluminescence of Mn^{2+/4+}-activated doubly ordered spinel Mg₄(Ga/Al)SbO₈: site-selective Al³⁺-to-Ga³⁺ substitution enabling Mn⁴⁺ accumulation, excellent anti-thermal quenching of Mn²⁺ green-emission, and optical thermometry

Zien Cheng,^{a,#} Guangxiang Lu,^{a,#} Yuxuan Qi,^b Jinmei Huang,^a Gonggui Yan,^a Leiming Fang,^c Maxim Avdeev,^{*d,e} Tao Yang^{*a} and Pengfei Jiang,^{*a}

^aCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
^bChongqing Academy of Metrology & Quality Inspection, Chongqing 401121, China
^cKey Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
^dAustralian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
^eSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
*Corresponding Authors: max@ansto.gov.au; taoyang@cqu.edu.cn; pengfeijiang@cqu.edu.cn.
#These authors contributed equally.

Fig. S1 XRD patterns for MGSO, MG_{0.5}A_{0.5}O, MASO.

Fig. S2 High-resolution XPS spectra for Mg 1s (a), Ga 3d (b), and O 1s and Sb 3d (c).

Fig. S3 High-resolution XPS spectra for Mg 1s (a), Al 3d (b), and O 1s and Sb 3d (c).

Fig. S4 Rietveld refinement plots of NPD and PXRD data for $MG_{0.5}A_{0.5}SO$. The circles, red and black solid lines represent the observed data, calculated data, and their differences. The expected Bragg positions are given as green bars at the bottom of the patterns.

Fig. S5 Plots of metal-oxygen bond length as a function of Al-content in MGA_vO (y = 0, 0.5, 1).

Fig. S6 UV–vis diffusion spectra for MGSO. The insets show the plots of $(\alpha hv)^2$ as a function of the photon energy.

Fig. S7 (a) Electronic band structure of MASO. (b) PDOS of Mg, Al, Sb, and O for MGSO. (c) Isosurfaces ($5 \times 10^{-4} \text{ e}^{-/\text{bohr}^3}$) of the partial charge density at the VBM and CBM of MASO.

Fig. S8 COHP diagrams of the Mg–O bonds in MGSO and MASO.

Fig. S9 XRPD patterns for MGSO:*x*Mn.

Figure S10. PLE spectra of MISO:*x*Mn monitored at wavelengths of 504 nm (a), 712 (b) and 666 nm (c).

Fig. S11 Low-temperature PL spectra for MGSO:0.012Mn recorded under excitation wavelengths of 334 (a) and 280 nm (b).

Fig. S12 Spectroscopic comparison for MGA_ySO:0.01Mn (y = 0 and 0.2) prepared with different Mn-sources.

Fig. S13 Rietveld plots of XRPD data for MGA_ySO:0.01Mn with y = 0, 0.6, and 1.

Fig. S14 Temperature-dependent PL spectra for MGSO:0.01Mn (a), MGSO:0.02Mn (b), and MGA0.2SO:0.01Mn (c) under an excitation wavelength of 280 nm.

Fig. S15 Linear fitting of the $\ln(I_0/I_T - 1) - 1/kT$ curves for MGSO:*x*Mn (x = 0.01 and 0.02) and MGA_{0.2}SO:0.01Mn.

Fig. S16 Temperature-dependent PL spectra for MGSO:0.02Mn (a), MGA0.2SO:0.01Mn (b), and MGA0.4SO:0.01Mn under an excitation wavelength of 250 nm.

Fig. S17 Fitting of the FIR—T curves for MGSO:xMn (x = 0.01 and 0.02) and MGA_{0.2}SO:0.01Mn.

formula	$Mg_4Ga_{0.5}Al_{0.5}SbO_8$				
source	X-ray (Cu Kal)	neutron			
temperature	298				
wavelength (Å)	1.5406	1.6220			
space group (no.)	<i>Imma</i> (no	. 74)			
<i>a</i> (Å)	5.98102	.(5)			
<i>b</i> (Å)	17.933(3)				
<i>c</i> (Å)	8.41505(6)				
$V(Å^3)$	902.66(1)				
Ζ	6				
d-spacing (Å)	0.82-10	0.81–10			
R_{wp} (%)	9.79	5.20			
<i>R</i> _p (%)	7.25	3.69			
R_{\exp} (%)	2.21	2.61			
gof	4.43	1.99			

 $\label{eq:constallographic data for MG_{0.5}A_{0.5}SO.$

Table S2. Atomic coordinates, site occupation factors, isotropic thermal displacement factors, of $MG_{0.5}A_{0.5}SO$ and MASO obtained from combined Rietveld refinements against both X-ray and neutron diffraction data.

MG _{0.5} A _{0.5} SO						
atom	site	x	у	Ζ	sof.	B _{iso.} (Å ²)
Mg1/Al	8h	0	0.1691(1)	0.0006(3)	0.96(5)/0.04(5)	0.22(3)

Mg2/Al	8g	0.25	0.0095(7)	0.25	0.82(5)/0.18(5)	0.28(5)
Sb1	4b	0	0	0	1	1.5(2)
Sb2/Mg	4c	0.25	0.25	0.75	0.5/0.5	0.49(2)
Ga1/Al	4e	0	0.25	0.375 (2)	0.695(3)/0.305(3)	1.1(1)
Mg3/Ga	8h	0	0.0834(1)	0.6290(5)	0.973(2)/0.027(2)	0.62(4)
01	8i	0.239(2)	0.25	0.511(2)	1	1.1(2)
02	8h	0	0.1726(2)	0.2500(6)	1	0.4(1)
03	8h	0	0.6663(4)	0.2640(7)	1	0.7(2)
O4	8h	0	0	0.2702(6)	1	0.7(2)
05	16j	0.7889(5)	0.5816(1)	0.4915(6)	1	0.4(1)
			MASO			
atom	site	x	у	Ζ	sof.	$B_{iso.}$ (Å ²)
atom Mg1	site 8h	x 0	y 0.16983(6)	<i>z</i> 0.0097(2)	<i>sof.</i> 1	B _{iso.} (Å ²) 0.28(3)
atom Mg1 Mg2/Al	site 8h 8g	x 0 0.25	<i>y</i> 0.16983(6) 0.09055(7)	<i>z</i> 0.0097(2) 0.25	<i>sof.</i> 1 0.75/0.25	B _{iso.} (Å ²) 0.28(3) 0.58(3)
atom Mg1 Mg2/Al Sb1	site 8h 8g 4b	x 0 0.25 0	y 0.16983(6) 0.09055(7) 0	z 0.0097(2) 0.25 0	<i>sof.</i> 1 0.75/0.25 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7)
atom Mg1 Mg2/Al Sb1 Sb2/Mg	site 8h 8g 4b 4c	x 0 0.25 0 0.25	y 0.16983(6) 0.09055(7) 0 0.25	z 0.0097(2) 0.25 0 0.75	sof. 1 0.75/0.25 1 0.5/0.5	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1)
atom Mg1 Mg2/Al Sb1 Sb2/Mg All	site 8h 8g 4b 4c 4e	x 0 0.25 0 0.25 0	y 0.16983(6) 0.09055(7) 0 0.25 0.25	z 0.0097(2) 0.25 0 0.75 0.3756(3)	sof. 1 0.75/0.25 1 0.5/0.5 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1) 0.44(3)
atom Mg1 Mg2/Al Sb1 Sb2/Mg All Mg3	site 8h 8g 4b 4c 4e 8h	x 0 0.25 0 0.25 0 0	y 0.16983(6) 0.09055(7) 0 0.25 0.25 0.08341(8)	z 0.0097(2) 0.25 0 0.75 0.3756(3) 0.627(2)	sof. 1 0.75/0.25 1 0.5/0.5 1 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1) 0.44(3) 0.35(2)
atom Mg1 Mg2/Al Sb1 Sb2/Mg All Mg3 Ol	site 8h 8g 4b 4c 4e 8h 8i	x 0 0.25 0 0.25 0 0 0 0.2534(8)	y 0.16983(6) 0.09055(7) 0 0.25 0.25 0.08341(8) 0.25	z 0.0097(2) 0.25 0 0.75 0.3756(3) 0.627(2) 0.504(1)	sof. 1 0.75/0.25 1 0.5/0.5 1 1 1 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1) 0.44(3) 0.35(2) 1.1(1)
atom Mg1 Mg2/Al Sb1 Sb2/Mg All Mg3 Ol O2	site 8h 8g 4b 4c 4e 8h 8i 8h	x 0 0.25 0 0.25 0 0 0 0.2534(8) 0	y 0.16983(6) 0.09055(7) 0 0.25 0.25 0.08341(8) 0.25 0.1670(4)	z 0.0097(2) 0.25 0 0.75 0.3756(3) 0.627(2) 0.504(1) 0.2576(8)	sof. 1 0.75/0.25 1 0.5/0.5 1 1 1 1 1 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1) 0.44(3) 0.35(2) 1.1(1) 0.9(1)
atom Mg1 Mg2/Al Sb1 Sb2/Mg All Mg3 Ol Ol O2 O3	site 8h 8g 4b 4c 4e 8h 8i 8h 8i 8h	x 0 0.25 0 0.25 0 0 0.2534(8) 0 0	y 0.16983(6) 0.09055(7) 0 0.25 0.25 0.08341(8) 0.25 0.1670(4) 0.6735(3)	z 0.0097(2) 0.25 0 0.75 0.3756(3) 0.627(2) 0.504(1) 0.2576(8) 0.2613(7)	sof. 1 0.75/0.25 1 0.5/0.5 1 1 1 1 1 1 1 1	B _{iso.} (Å ²) 0.28(3) 0.58(3) 0.246(7) 0.57(1) 0.44(3) 0.35(2) 1.1(1) 0.9(1) 0.42(8)

05	16j	0.7806(4)	0.5796(2)	0.4902(6)	1	0.37(5)
----	-----	-----------	-----------	-----------	---	---------

MGSO								
Mg1/Ga—O1 × 2	2.04(1)	Mg2/Ga—O2 × 2	2.06(1)	Mg3/Ga—O4	1.82(2)			
Mg1/Ga—O3	2.06(3)	Mg2/Ga—O5 × 2	2.063(9)	Mg3/Ga—O3	2.02(2)			
Mg1/Ga—O2	2.09(2)	Mg2/Ga—O4 × 2	2.189(9)	Mg3/Ga—O5 × 2	2.05(1)			
Mg1/Ga—O5 × 2	2.09(1)	<mg2 ga—o=""></mg2>	2.104(9)	<mg3 ga—o=""></mg3>	1.99(2)			
< Mg1/Ga—O>	2.07(2)							
Sb1O4 × 2	1.96(2)	Sb2/Mg–O3 × 4	2.04(1)	Ga1/Mg–O2 × 2	1.80(1)			
Sb1—O5 × 4	1.958(9)	Sb1/Mg–O1 × 2	2.07(2)	Ga1/Mg-O1 × 2	1.95(2)			
<sb10></sb10>	1.96(2)	<sb1 mg—o=""></sb1>	2.05(1)	<ga1 mg—o=""></ga1>	1.88(2)			
MG _{0.5} A _{0.5} SO								
Mg1/Al-O1 × 2	2.020(3)	Mg2/Al-O2 \times 2	2.109(4)	Mg3-O4	1.910(4)			
Mg1/Al-O3	2.042(7)	Mg2/Al—O5 × 2	2.051(5)	Mg3-O3	1.872(7)			
Mg1/Al-O2	2.091(6)	Mg2/Al—O4 \times 2	2.203(2)	Mg3–O5 × 2	2.080(4)			
Mg1/Al-O5 \times 2	2.015(3)	<mg2 al—o=""></mg2>	2.121(4)	<mg3–o></mg3–o>	1.986(4)			
< Mg1/Al—O>	2.034(4)							
Sb1O4 × 2	1.934(5)	Sb2/Mg–O3 × 4	2.122(4)	Ga1/Al-O2 × 2	1.740(5)			
Sb1—O5 × 4	1.934(3)	Sb1/Mg–O1 × 2	2.093(4)	Ga1/Al-O1 × 2	1.911(5)			
<sb1o></sb1o>	1.934(4)	<sb1 mg–o=""></sb1>	2.112(4)	<gal mg–o=""></gal>	1.826(5)			
		MAS	50					
Mg1O1 × 2	2.062(2)	Mg2/A1—O2 × 2	2.060(2)	Mg304	1.894(2)			

Table S3.	Selected interatomic	distances for 1	MGSO, MG ₀	.5A0.5SO and	MASO.

*S*14/*S*16

Mg1-O3	2.066(4)	Mg2/Al-O5 \times 2	2.009(3)	Mg3O3	1.954(4)
Mg1-O2	2.091(4)	Mg2/Al-O4 \times 2	2.203(1)	Mg305 × 2	2.039(2)
Mg105 × 2	2.050(2)	<mg2 al—o=""></mg2>	2.091(2)	<mg3–o></mg3–o>	1.982(3)
< Mg1–O>	2.064(3)				
Sb1—O4 × 2	1.959(3)	Sb2/Mg–O3 \times 4	2.041(2)	Al1—O2 × 2	1.728(3)
Sb1—O5 × 4	1.952(2)	Sb1/Mg–O1 \times 2	2.053(4)	Al1-O1 × 2	1.851(3)
<sb1o></sb1o>	1.954(2)	<sb1 mg—o=""></sb1>	2.045(3)	<gal mg—o=""></gal>	1.790(3)

Table S4. Lattice parameters of the structures after DFT optimization.

Compounds	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$
MGSO	6.07	18.23	8.55	947.14
MASO	6.03	18.06	8.46	921.77

Table S5. Fitted values of τ_1 , τ_2 , A_1 , and A_2 for the decay curves of MGSO:*x*Mn phosphors.

$\lambda_{\rm ex} = 252 {\rm nm}, \lambda_{\rm em} = 504 {\rm nm}$								
MISO: <i>x</i> Mn	$ au_1$ ($ imes$ 10 ⁶ ns)	$ au_2$ ($ imes$ 10 ⁶ ns)	A_1	A_2				
<i>x</i> = 0.006	0.8(1)	3.46(8)	79.(1)	850.(7)				
<i>x</i> = 0.012	0.97(5)	3.17(9)	19(7)	74(2)				
<i>x</i> = 0.016	0.26(7)	2.81(2)	148.(8)	793.(3)				
x = 0.020	0.58(4)	2.79(6)	221.(8)	743.(2)				
x = 0.024	0.52(9)	2.63(9)	229.(7)	673.(1)				

	A	В	ΔE
MGSO:0.01Mn	0.21(2)	42 2(1)	0.152(9)
$(\lambda_{ex} = 280 \text{ nm})$	0.21(2)	42.3(1)	0.133(8)
MGSO:0.02Mn	0.017(9)		0.00(2)
$(\lambda_{ex} = 280 \text{ nm})$	-0.017(8)	6.2(8)	0.09(2)
MGA _{0.2} SO:0.01Mn	0.02(1)	(5(6)	0.12(1)
$(\lambda_{ex} = 280 \text{ nm})$	0.03(1)	0.3(0)	0.13(1)
MGSO:0.02Mn	0.122(8)	2 24(0)	0.07(2)
$(\lambda_{ex} = 250 \text{ nm})$	0.125(8)	3.24(9)	0.07(2)
MGA _{0.2} SO:0.01Mn	0.202(6)	5 50(9)	0.07(2)
$(\lambda_{ex} = 250 \text{ nm})$	0.302(0)	5.50(8)	0.07(2)

Table S6. Fitted values of A, B, and ΔE for the FIR—T curves of MGSO:*x*Mn (*x* = 0.01 and 0.02) and MGA_{0.2}SO:0.01Mn.

Table S7. Rietveld refinement parameters, agreement factors, and calculated Debye temperatures for $MGA_vSO:0.01Mn$ (y = 0, 0.6, 1.0).

у	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA})$	R_{wp} (%)	$R_{\rm p}$ (%)	χ^2	$\Theta_{\mathrm{D}}(\mathrm{K})^{\mathrm{a}}$
0	5.9967(5)	17.986(8)	8.4442(9)	910.8(2)	9.43	6.75	4.44	739.6(9)
0.6	5.9681(3)	17.903(6)	8.4011(2)	897.6(7)	9.63	6.99	4.23	915.5(6)
1	5.9618(3)	17.870(9)	8.3839(4)	893.2(5)	8.11	6.39	3.53	1688.5(2)
	$3\hbar^2 T N_A$							

^a Debye temperature (Θ_D) is calculated according to the expression $\sqrt[]{A_i K_B U_{iso,i}}$, where U_{iso} indicates the atomic average displacement factor, and A_i is the atomic weight of the atom.