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Experimental Section 

Chemicals: 

Zinc acetate dihydrate (Zn(Ac)2·2H2O), melamine (C3H6N6), N,N Dimethylformamide 

(DMF), and hexadecyl trimethyl ammonium bromide (CTAB) was purchased from 

Sinopharm Chemical Reagent Co., Ltd. Ruthenium (IV) oxide (RuO2), 2-

methylimidazole (2MI, C4H6N2), potassium hydroxide (KOH), Polyacrylonitrile (PAN, 

Mw = 150,000 g mol-1),  and cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O) were 

purchased from Shanghai Macklin Biochemical Co., Ltd. Pt/C (20 wt%) was purchased 

from Sigma-Aldrich, and Nafion D-521 dispersion (5% w/w in water and 1-propanol, 

≥ 0.92 meq/g exchange capacity) was purchased from Alfa Aesar. All reagents were 

analytical grade and used as received without further purification. 

Synthesis of ZIF-8 precursor

Typically, 9.2 mg of CTAB and 11.2 g of 2-MI were dissolved in 50 mL of water and 

stirred for 15 minutes to form a homogeneous solution. 3 g of Zn(Ac)2·2H2O was 

dissolved in 50 mL of water. The two solutions were rapidly mixed, the resulting 

suspension turned white after 20 s and aged for 3 h at room temperature. The white 

powder was obtained by centrifugation at 10,000 rpm for 25 min, washed with 

deionized water and dried at 60 ℃ for 24 h.1

Synthesis of CoCNTs/PCNFs and Co/PCNFs

First, 0.5 g of the ZIF-8 was dissolved in 5.0 g DMF and stirred for 2 h, followed by 

the addition of 0.6 g PAN with stirring for 12 h to yield a milky precursor solution for 

electrospinning. Then, the precursor solution was placed in a 5 mL syringe with a 

stainlesssteel needle (1.80 mm in diameter). When electrospinning, the applied voltage 

was 21 kV, the solution feed rate was 0.6 mL h-1, and the distance between the spinneret 

and collector was 25 cm. The obtained white ZIF-8@PAN nanofibers mat was divided 

into small pieces with a size of 4 × 10 cm2. Typically, 0.146 g of Co(NO3)2·6H2O was 

dissolved in 10 mL of deionized water (DI) as solution A, 0.329 g of 2-MI was also 

dispersed in 10 mL of DI as solution B, then the A solution was quickly added into the 

B solution and stirring for 25 s to form purple solution. The prepared 10 × 10 cm2 ZIF-

8@PAN nanofibers mat was directly immersed in the solution and aged for 1 h at room 
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temperature, then washed with DI and dried under vacuum oven at 70 °C. The obtained 

purple ZIF-8@PAN membrane coating with ZIF-67 was named as ZIF-67/ZIF-

8@PAN. The ZIF-67/ZIF-8@PAN nanofibers film and melamine were heated at a 

ramping rate 1 °C·min-1 to 250 °C and keep for 5 h, then carbonized for 3 h with a 

heating rate of 3 °C·min-1 to a certain temperature (600, 700, 800, 900 °C) under Ar/H2 

(10%) atmosphere. The different carbonation temperature cobalt-anchored carbon 

nanotubes/porous carbon nanofibers (CoCNTs/PCNFs-T) were obtained (T represents 

the carbonization temperature). The Co/PCNFs was synthesize without the addition of 

C3H6N6.

Synthesis of CNFs and PCNFs

Typically, 0.5 g PAN was slowly added to 5.0 g DMF and stirred for 12 h at room 

temperature to form a yellow precursor solution for electrospinning. The obtained white 

PAN nanofibers mat was obtained by the same electrospinning treatment, then 

carbonized at 800 °C to obtain carbon nanofibers (CNFs). The prepared ZIF-8@PAN 

was directly carbonized to obtain porous carbon nanofibers (PCNFs).

Characterizations: X-ray powder diffraction (XRD) patterns were recorded by 

Miniflex600 powder X-ray diffractometer using nickel-filtered Cu Kα radiation. The 

morphology and structure of the samples were analyzed by scanning electron 

microscopy (SEM, Zeiss-Sigma 300), transmission emission electron microscopy 

(TEM, FEI F20), and HRTEM and Energy dispersive X-ray (EDX) spectroscopy 

experiments. The chemical state of elements was investigated by X-ray photoelectron 

spectra (XPS, ESCALAB 250). The Raman spectra were obtained by a Renishaw in 

Via Raman Microscope (532). Specific surface area and pore size distribution of the 

samples was examined by the Brunauer-Emmett-Teller (BET) method using nitrogen 

adsorption and desorption isotherms on a Micromeritics Instrument Corporation 

sorption analyzer (Micromeritics TriStar II 3020).

Electrochemical measurements 

All electrochemical measurements were conducted in a electrochemical workstation 

employing a standard three-electrode system (CHI 760E, Shanghai Chenhua, China). 

In this workstation, the carbon rod and Hg/HgO (1.0 M KOH solution) were applied as 
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the counter and reference electrodes, respectively. To prepare the ink of the working 

electrode, 5.0 mg of as-prepared catalyst or 20 wt% Pt/C catalyst were dissolved in a 

mixed solution (including 50 μL of 5% Nafion solution, 475 μL of ethanol, and 475 μL 

DI water) to obtain a homogeneous catalyst ink under sonicating for 1 h. All measured 

potentials were referenced to the reversible hydrogen electrode (RHE) using the following 

Nernst equation.2-3

ERHE = EHg/HgO + 0.0591 × pH + 0.098

For the ORR experiment, 8 μL of the catalyst ink was put on the surface of glassy 

carbon rotating disk electrode (RDE, 3.0 mm in diameter) and dried at room 

temperature (loading of active materials 0.5 mg cm-2). The cyclic voltammetry (CV) 

was obtained at a scan rate of 50 mV s-1 and the linear sweep voltammetry (LSV) tests 

was performed with a sweep rate of 5 mV s-1. The electron transfer number (n) can be 

calculated from the K-L equation. 
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where 𝑗 is the measured current density, 𝑗𝐾 and 𝑗𝐿 are the kinetic and limiting current 

densities, respectively. ω is the electrode rotation speed, F is the Faradaic constant      

(96,485 C mol-1), 𝐶𝑂2 (1.2 × 10-6 mol cm-3) and 𝐷𝑂2 (1.90 × 10-5 cm2 s -1) are the 

concentration (solubility) and diffusion coefficient of O2 in 0.1 M KOH, V is the 

kinematic viscosity of the 0.1 M KOH solution (0.01 cm2 s -1), k is the electron transfer 

rate constant, and N is the current collection efficiency of RRDE (N=0.4), Ir and Id are 

the ring current, and the disk current, respectively.

For the OER test of catalyst, 100 μL ink was put on carbon paper (1 × 1 cm2) as 

working electrode, measuring by a conventional three electrode at a scan rate of 5 mV 

s -1 in 1.0 M KOH. The CV curves were measured at scan rates of 5, 10, 15, 20, 25, 30, 

35 and 40 mV s -1, separately. 

The ORR stability test was conducted at a constant potential of 0.85 V under a 

rotating speed (1600 rpm), and the OER stability was performed at potential of 1.56 V. 

The electrochemical impedance spectroscopy (EIS) measurements for ORR and OER 

were tested from 100 kHz to 100 mHz at the voltage of 0.85 V and 1.56 V, respectively.

The rechargeable Zn-air battery was tested on home-assembled electrochemical 

cells, 10 mg prepared catalyst was put on a carbon paper with an area of 1.0 cm2 to 

obtain the air electrode, polished Zn foil was used as anode in 6.0 M KOH mixed with 

0.2 M zinc acetate. The area of zinc sheet is 1 × 3 cm2, and the distance between anode 

and cathode is 0.6 cm. For comparison, 10 mg of mixed powder of 20 wt% Pt/C and 

RuO2 with the mass ratio of 1:1 were used to prepare air electrode. The performance of 

Zn-air battery was measured on a CHI 760E electrochemical workstation. The specific 

capacity was calculated according to the equation.

                                                       (8)
𝐶 =

𝑄
∆𝑚

=
𝐼𝑡

∆𝑚

Where I is the applied current (mA), t is service time (h), and represents the mass ∆𝑚 

of consumed zinc (g).
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Figure S1. The SEM image of ZIF-8.
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Figure S2. The SEM images of ZIF-8@PAN.
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Figure S3. The SEM images of ZIF-67/ZIF-8@PAN.
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Figure S4. The XRD patterns of ZIF-8, ZIF-8@PAN and ZIF-67/ZIF-8@PAN.
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Figure S5. The SEM images of CNFs.
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Figure S6. The SEM images of PCNFs.
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Figure S7. The SEM images of Co/PCNFs.
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Figure S8. The SEM images of (a-c) CoCNTs/PCNFs-600 (d-f) CoCNTs/PCNFs-700 

and (g-i) CoCNTs/PCNFs-900.
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Figure S9. The XRD patterns of CoCNTs/PCNFs-T.
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Figure S10. (a) XPS survey spectrum and (b) the deconvoluted XPS spectra of O 1s 

of CNFs, PCNFs, Co/PCNFs, and CoCNTs/PCNFs.
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Figure S11. The CV curves of the different catalysts.
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Figure S12. LSV curves and K–L plots of (a-b) CNFs, (c-d) PCNFs, and (e-f) 

Co/PCNFs. In the table of the figure, k is the slope of the line and n is the electron 

transfer number calculated by the K-L equation.
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Figure S13. (a) The LSV. (b) the electron transfer number (n) and the peroxide yield 

(yperoxide) of CoCNTs/PCNFs-T.
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Figure S14. LSV curves and K–L plots of (a-b) CoCNTs/PCNFs-600, (c-d) 

CoCNTs/PCNFs-700, and (e-f) CoCNTs/PCNFs-900. In the table of the figure, k is 

the slope of the line and n is the electron transfer number calculated by the K-L 

equation.
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Figure S15. The ORR stability of CoCNTs/PCNFs and Pt/C.
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Figure S16. (a-d) The CV curves and plots of ΔJ versus scan rate of the catalysts at 

various scan rates.
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Figure S17. (a) The LSV curve of CoCNTs/PCNFs-T before and after IR 

compensation. (b) Nyquist plots of EIS spectra of CoCNTs/PCNFs-T.
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Figure S18. (a-c) The CV curves and (d) plots of ΔJ versus scan rate of the catalyst at 

various scan rates.



24

Figure S19. The stability of CoCNTs/PCNFs and RuO2.
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Table S1. List of the ORR/OER catalytic properties in alkaline solution of the 

CoCNTs/PCNFs and previously reported state-of-the-art catalysts.

ORR OER

Catalysts

Electrolyte
Eonset 

(V)

E1/2 

(V)

Jlimit 

(mA

cm-2)

Electrolyte
Eonset

(V)

E(j=10) 

(V)

△E= 

E(j=10)

-E1/2

(V)

Ref.

CoCNTs/PCNFs 0.1 M KOH 0.92 0.85 6 0.1 M KOH 1.37 1.56 0.71 This work

CoNCNTF/CNF 0.1 M KOH 0.974 0.857 5.5 0.1 M KOH - 1.61 0.76 4

M SA@NCF/CNF 0.1 M KOH - 0.88 - 0.1 M KOH - 1.63 0.75 5

HoNPs@HPNCS-60 0.1 M KOH - 0.834 - 0.1 M KOH - 1.573 0.74 6

NiCoP/CNF900 0.1 M KOH 0.92 0.82 7.16 0.1 M KOH 1.43 1.498 0.678 7

N, P-HCNF-8 0.1 M KOH 0.93 0.82 5.1 0.1 M KOH - 1.55 0.73 8

NiS2/CoS2-O NWs 0.1 M KOH 0.85 0.7 4.7 0.1 M KOH 1.46 1.5 0.8 9

Co/Co-N-C 0.1 M KOH 0.86 0.78 4.6 0.1 M KOH - 1.54 0.76 10

FeCo-Co/NC 0.1 M KOH 0.93 0.808 4.94 0.1 M KOH - 1.58 0.772 11

Co3O4-x@N-C-2 0.1 M KOH 0.936 0.845 4.51 0.1 M KOH - 1.75 0.905 12

Co@CNTs (1:1) 0.1 M KOH - 0.9 6 0.1 M KOH - 1.57 0.67 13

CoNCF-1000-80 0.1 M KOH 0.92 0.83 5.03 0.1 M KOH 1.63 1.66 0.84 14

Co-N-GCl 0.1 M KOH 0.92 0.857 5.5 0.1 M KOH 1.61 1.657 0.807 15

Co@CNT/MSC 0.1 M KOH 0.89 0.81 4.7 0.1 M KOH - 1.777 0.967 16

Co@NC-0.86 0.1 M KOH 0.9 0.8 4.86 0.1 M KOH - 1.82 0.93 17

CoZn-NCNTs 0.1 M KOH 0.94 0.82 5 0.1 M KOH - 1.83 1.01 18

Fe-N-CNFs-800 0.1 M KOH 0.98 0.86 5.12 0.1 M KOH - - - 19

NiCoFe@N-CNFs 0.1 M KOH - 0.81 4.4 0.1 M KOH - 1.5 0.69 20

CoO-Co/CNF 0.1 M KOH 0.95 0.858 2.9 0.1 M KOH - 1.667 0.809 21

NCNF-1000 0.1 M KOH 0.97 0.8 4.7 0.1 M KOH 1.43 1.84 1.02 22

Co@CNFs-50-800 0.1 M KOH 0.88 0.8 5 0.1 M KOH 1.50 1.54 0.74 23

H-NSC@Co/NSC 0.1 M KOH 0.98 0.85 5.6 0.1 M KOH 1.5 1.6 0.75 24
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Table S2. A comparison of Zn-Air battery performances of this work with reported 

catalysts.

Catalysts Electrolytes
Open-circuit 

voltage (V)

cycle life 

(h)

Capacity 

(mAh/g-1)

Power density 

(mW/cm2)
Ref.

CoCNTs/PCNFs
6 M KOH + 0.2 M 

Zn(OAc)2
1.455 100 760 262.6 This work

Co@CNTs
6 M KOH + 0.2 M 

ZnCl2
- 40 - 149.2 25

Co@NC-0.86
6 M KOH + 0.2 M 

Zn(OAc)2
1.386 - 663 95 26

CoZn-NCNTs 6 M KOH 1.46 92 757 214 27

Fe/3S/N-C 6 M KOH 1.5 - 672 94 28

Fe-N-CNTs-800 6 M KOH 1.5 - 614 - 29

SAFe-SWCNT
6 M KOH + 0.2 M 

Zn(OAc)2
1.47 33 772 210 30

Co-Nx/C NRA
6 M KOH + 0.2 M 

Zn(OAc)2
1.42 80 - 193.2 31

Fe@C–NG/NCNT
6 M KOH + 0.2 M 

Zn(OAc)2
1.44 99 682 146.5 32

Co-Ni@NSPC
6 M KOH + 0.2 M 

Zn(OAc)2
1.54 60 - 51.6 33

(Co, Mg)S2@CNT 6 M KOH 1.4 50 - 268 34

CoIn2S4/S-rGO
6 M KOH + 0.2 M 

ZnCl2
1.42 50 745 133 35

NiFe/NCNF/CC
6 M KOH + 0.2 M 

Zn(OAc)2
- 20 730 140.1 36

Ni3Fe/N-C sheets
6 M KOH + 0.2 M 

ZnCl2
- - 528 - 37

CoNx/Zn-NC
6 M KOH + 0.2 M 

Zn(OAc)2
1.48 115 718.9 164.1 38

Co@CNFs-50-800
6 M KOH + 0.2 M 

Zn(OAc)2
1.46 160 809 165.5 23

H-NSC@Co/NSC
6 M KOH + 0.2 M 

Zn(OAc)2
1.512 - 828 204.3 24
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