Supporting Information

Achieving ultrasensitive temperature sensing through nonthermally coupled energy levels to overcome energy gap constraint

Guotao Xiang^{1,*}, Yuanyuan Yi¹, Zhiyu Yang¹, Yongjie Wang¹, Lu Yao¹, Sha Jiang

¹, Xianju Zhou¹, Li Li¹, Xiaojun Wang^{3,*} and Jiahua Zhang^{2,*}

¹ Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China

² State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

³ Department of Physics & Astronomy, Georgia Southern University, Statesboro, Georgia 30460,

U.S.A.

Corresponding Authors: Dr. Guotao Xiang; Email address: <u>xianggt@cqupt.edu.cn</u> Dr. Jiahua Zhang; Email address: <u>zhangjh@ciomp.ac.cn</u> Dr. Xiaojun Wang; Email address: <u>xwang@georgiasouthern.edu</u>

Figure S1 PL spectra of (a) $CaSc_2O_4$: x% Yb³⁺/0.5% $Er^{3+}/3\%$ Nd³⁺ (x = 1, 2, 5, 10, 15, 20), (b) $CaSc_2O_4$: 2% Yb³⁺/y% $Er^{3+}/3\%$ Nd³⁺ (y = 0.5, 1, 2) and (c) $CaSc_2O_4$: 5% Yb³⁺/0.5% $Er^{3+}/2\%$ Nd³⁺ (z = 0.5, 1, 3, 5, 10) under the excitation of 980 nm wavelength.

Figure S2 Temperature dependent red and NIR emission in CSO excited by 980 nm wavelength.

Figure S3 The repeatability of FIR_{T} - and FIR_{N} -based optical thermometer.