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Experimental section

Materials and reagents: All the chemicals were analytical purity and used without 

further purifications. Pluronic F127 (PEO106PPO70PEO106, Mw = 12600 g/mol, Acros 

Corp.), acetic acid (CH3COOH, Tianjin ZhiYuan Reagent Co., Ltd., AR), hydrochloric 

acid (HCl, Nanchang Chemical Works, 36~37wt%), tetrahydrofuran (THF, Tianjin 

ZhiYuan Reagent Co., Ltd., AR), tetrabutyl titanate (TBOT, aladdin Biochemical 

Technology Co., Ltd., 98.0%), ethanol (C2H5OH, Tianjin ZhiYuan Reagent Co., Ltd., 

AR), glycerol (C3H8O3, XILONG Scientific Co., Ltd., AR), nickel chloride 

hexahydrate (NiCl2·6H2O, Sinopharm Chemical Reagent Co., Ltd, ≥98.0%), 

chromium(III) nitrate nonahydrate (Cr(NO3)3·9H2O, Aladdin, 98.0%), sodium 

borohydride (NaBH4, J&K Chemical, 98.0%), sodium hydroxide (NaOH, Tianjin 

Zhiyuan Chemical Reagent Co., Ltd,≥96.0%), hydrous hydrazine (N2H4·H2O, Aladdin, 

98%,), and hydrazine hemisulfate salt (N2H4·1/2H2SO4, Aldrich, 99.5%) were used 

without further purification. Ultrapure water used in the experiment was purified using 

a Millipore system.

Syntheses of hydrazine borane: Hydrazine borane (N2H4BH3) was synthesized 

according to our previous work [S1,S2]. Typically, 21.42 g of hydrazine hemisulfate 

salt (N2H4∙1/2H2SO4) and 10.0 g of sodium borohydride (NaBH4) were added into 160 

mL of anhydrous 1,4-dioxane with stirring at 303 K under an atmosphere of dry argon 

for 48 h. The resulting slurry was then centrifuged to get the clear solution, and then 

the filtrate was dried in a rotary evaporator at 333 K overnight. The obtained raw 

N2H4BH3 was further washed with n-pentene, then the white solid-state N2H4BH3 was 

finally obtained after drying under vacuum at 313 K.

Catalytic activity measurement: The reaction device for measuring N2H4BH3 gas 

production is the same as described in our previous work [S3]. Usually, a catalyst 

suspension solution (5 mL) in the two-neck round-bottomed flask (50 mL). Immerse 

the flask in a constant temperature water bath. One of the two necks is used to connect 

the gas burette to the measure the volume of released gas. The other neck is used to 
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inject N2H4BH3 (1.0 mmol) into the catalyst suspension under stirring, and the 

decomposition reaction begins. The volume of gas released is measured by recording 

the displacement of water in the gas burette. The content of Ni was fixed to be 

nNi/nN2H4BH3 of 0.2 for all the catalysts.

Characterization：The detailed morphology and microstructures of the synthesized 

samples were investigated by scanning electron microscope (SEM, SU8020) and 

transmission electron microscopy (TEM, JEM-2100) coupled with an energy dispersive 

X-ray (EDX) detector for elemental analysis. Powder X-ray diffraction (XRD) patterns 

were carried out with X-ray diffractometer of Rigaku Rint-2200, using graphite 

monochromatized Cu Kα radiation (λ = 1.54 Å) at a scanning rate of 4°/min. The phase 

composition and crystallinity of samples were investigated by Raman (LabRAM HR 

Evolution). Thermogravimetry analysis was conducted on a Mettler Toledo 

TGA/SDTA851 analyzer from 30 to 800 °C in the air (20 mL/min) with a ramp rate of 

5 °C/min. Fourier transform infrared (FTIR) spectra were carried on a Thermo Nicolet 

6700 instrument. Electron paramagnetic resonance (EPR) was carried out by using 

Bruker A300 at 77 K. The UV-Vis absorption spectra were recorded by UV-Vis 

spectrophotometer (UV-Vis, Hitachi, U-3310) from the scale range of 400-700 nm. X-

ray photoelectron spectroscopic (XPS) spectra were collected on a Thermo Scientific 

ESCALABMKLL apparatus using an Al Kα source. The Ar sputtering experiment was 

taken under a sputtering acceleration voltage of 1 kV and a background vacuum 3.2 × 

10-6 Pa. The Brunauer-Emmett-Teller (BET) equation method was used to analyze the 

specific surface areas, on the basis of nitrogen adsorption-desorption isotherms which 

was recorded on a BELSORP-mini II at 77 K. The sample was degassed at 423 K for 

12 h before analysis. Determine the gas composition by using a gas chromatograph 

(GC-9790Plus).

Calculation method: The H2 selectivity for N2H4BH3 (α) dehydrogenation is 

calculated by the following reaction formulas (Eqs. (S1-S2):
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N2H4BH3 + 3H2O → B(OH)3 + (3 + 2α) H2 + (2α+1)/3 N2 + 4(1-α)/3NH3    (S1)

 α =  
3λ -  10

8
 [λ =  

n(H2 +  N2)
n(N2H4BH3)

 (10
3

 ≤  λ ≤  6)]                       (𝑆2)

The turn over frequency (TOF) reported in this work is an apparent TOF value based 

on the number of metal Ni atoms in catalysts, which is calculated from the equation as 

follow:

                                          (S3)
𝑇𝑂𝐹 =

𝑛(𝐻2)

𝑛(𝑚𝑒𝑡𝑎𝑙) × 𝑡

Where nH2 is the mole number of generated H2, nmetal is the total mole number of Ni 

in catalyst and t is the completed reaction time in hour.
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Fig. S1. TEM image and the corresponding particle size distribution of Ni/CTO-NF.
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Fig. S2. TG curves of the Ni-Cr/CTO-NS, Ni-Cr/CTO-NF, and Ni-Cr/CTO-NR.
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Fig. S3. FTIR spectra of the Ni-Cr/CTO-NS, Ni-Cr/CTO-NF, and Ni-Cr/CTO-NR.
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Fig. S4. Raman spectra of Ni-Cr/CTO-NS, Ni-Cr/CTO-NF, and Ni-Cr/CTO-NR.
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Fig. S5. The survey XPS spectra of the Ni-Cr/CTO-NS, Ni-Cr/CTO-NF, and Ni-

Cr/CTO-NR.
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Fig. S6. The XRD pattern of synthesized N2H4BH3. 
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Fig. S7. GC analysis of the released gases from the decomposition of N2H4BH3.



S13

Fig. S8. Time course plots for hydrogen evolution from aqueous N2H4BH3 solution (0.2 

M, 5 mL) over CTO with different morphologies in the presence of NaOH (3.0 M) at 

323 K.
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Fig. S9. Time course plots for hydrogen evolution from aqueous N2H4BH3 solution (0.2 

M, 5 mL) over Ni-Cr/CTO-NF, Ni-Cr + CTO-NF, Ni-Cr/CTO-NR, Ni-Cr + CTO-NR, 

Ni-Cr/CTO-NS, and Ni-Cr + CTO-NS in the presence of NaOH at 323 K (nNi/nN2H4BH3 

= 0.2).
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Fig. S10. Time course plots for hydrogen release from aqueous N2H4BH3 solution (0.2 

M, 5 mL) over Ni-Cr/CTO-NF with different amounts of CTO in the presence of NaOH 

(3.0 M) at 323 K (nNi/nN2H4BH3 = 0.2).



S16

Fig. S11. Time course plots for hydrogen release from aqueous N2H4BH3 solution (0.2 

M, 5 mL) over Ni-Cr/CTO-NF with different concentrations of NaOH at 323 K 

(nNi/nN2H4BH3 = 0.2). 
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Fig. S12. Time course plots for hydrogen release from aqueous N2H4BH3 solution (0.2 

M, 5 mL) in the presence of NaOH (3.0 M) without catalyst at 323 K (nNi/nN2H4BH3 = 

0.2).
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Fig. S13. Stability test for dehydrogenation of aqueous N2H4BH3 solution (0.2 M, 5 

mL) over (a) Ni-Cr/CTO-NS, (b) Ni-Cr/CTO-NR, and (c) Ni-Cr/CTO-NF with NaOH 

at 323 K (nNi/nN2H4BH3 = 0.2).
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Table S1. The specific surface area, pore volume, and average pore diameter of 

different samples.

Catalysts
BET surface 

area (m2 g-1)

Pore Volume

(cm3 g-1)

Average pore

Diameter (nm)

Ni-Cr/CTO-NS 20.5 0.102 8.7

Ni-Cr/CTO-NR 37.5 0.176 16.5

Ni-Cr/CTO-NF 45.7 0.192 18.3
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Table S2. Comparison of the catalytic activities for hydrogen evolution from aqueous 

N2H4BH3 solution with previously reported catalysts.

Catalysts T 

(K)

n(H2+N2)/

n(N2H4BH3)

TOF

 (h-1)

NaOH 

(M)

Ref

Ni0.9Pt0.1-MoOx/NH2-N-rGO 323 6 4412 1.5 S4

Ni0.9Pt0.1-CeOx/MIL-101 323 6 2951.1 1.0 S5

Ni@Ir/OMS-2 323 6 2590 5.0 S6

Rh0.5-(MoOx)0.5 323 6 2000 2.0 S7

Ni0.9Pt0.1/MIL-101 323 6 1515 0.5 S8

Ni0.75Ir0.25/La2O2CO3 323 6 1250 1.2 S9

Rh0.8Ni0.2/MIL-101 323 6 1200 0.5 S10

Ni-MoOx/BN 323 6 600 1.0 S11

Ni-Cr/CTO-NF 323 6 555 3 This work

Ni0.6Pd0.4-MoOx

Ni0.5Fe0.5-CeOx/MIL-101

323

343

6

6

405

351.3

2.0

3.6

S12
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Ni0.9Pt0.1-CeO2 323 5.74 234 0.5 S14

Cu0.6Ni0.4Mo 323 6 108 2.0 S15

Rh4Ni1 NPs 323 5.8 90.0 -- S16

Ni0.36Fe0.24Pd0.4/MIL-101 323 6 60 2.0 S17

Ni0.89Pt0.11 NPs 323 5.79 18.0 -- S18
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