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Experimental

Preparation of UiO-66(Ce/Ti)

The bimetallic UiO-66(Ce/Ti) was prepared by incorporating Ti into UiO-66(Ce) via facile cation 

exchange. The TiCp2Cl2 (97.5 mg) and the UiO-66(Ce) crystals (130 mg) were mixed in 25 mL DMF with 

vigorous stirring. The obtained homogeneous liquid was transferred to a 50 mL round-bottom flask, and 

kept at 100 °C for 3 h and then cooled down to the room temperature. The product UiO-66(Ce/Ti) was 

collected by centrifugation and washed three times with DMF and ethanol respectively. The resultant UiO-

66(Ce/Ti) crystals were collected and dried under vacuum at 80 °C before use.

Preparation of BiOCl/UiO-66(Ce/Ti) (BCT) 

In a typical procedure, 200 mg UiO-66(Ce/Ti) and 5 mmol KMnO4 were each dissolved in 20 ml of 

de-ionized water, and the former was ultrasonically dispersed for 30 min to form a homogeneous suspension 

(denoted as solution A). 5 mmol BiCl3 was dissolved in 30 ml ethylene glycol to form a homogeneous 

solution B. Subsequently, the prepared A and B solution was added dropwise to the KMnO4 solution under 

continuous stirring. After 2 h, the obtained mixture was moved to a 100 mL Teflon-lined stainless steel 

autoclave and heated at 160 °C for 6 h and a brown powder product was obtained. Finally, the resultant 

BiOCl/UiO-66(Ce/Ti) compound (named as BCT) was centrifuged and washed with de-ionized water and 

ethanol several times before being dried at 70 °C for 12 h. For comparison, the pure BiOCl was prepared 

according to the same procedure except for the precursor without UiO-66(Ce/Ti) crystals.

Experimental Methods

Characterization of photocatalysts

X-ray diffractometry (XRD) using a Shimadzu XRD-6000 diffractometer with Cu Kα irradiation. 

Fourier transform infrared (FTIR) spectroscopy was performed at 8 cm–1 resolution in the range of 400-

4000 cm-1 on a Nicolet iS10 FTIR spectrometer. Scanning electron microscopy (SEM) images was 

performed using a Hitachi S-4800. TEM images were taken using a PHILIPS Tecnai 12 microscope 

operating at 120 kv. Energy Dispersive X-ray Spectroscopic analysis (EDS) was performed with a JEM-
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2010(HR) transmission electron microscope at an acceleration voltage of 200kV. High Resolution 

Transmission electron microscopy (HRTEM) was performed on Philips-FEI Tecnai G2 F20 operating at 

300kv. In addition, the in situ XPS measurements were carried out on an ESCALAB 250Xi spectrometer 

(Thermo Scientific, USA) under light irradiation (365-800nm) or dark conditions. All samples were 

analyzed under a pressure of less than 1.0×10-9 Pa. Spectra were acquired through the avantage software 

(Version 5.979) with a step of 0.05 еV. The UV-Vis diffuse reflectance spectra of the catalysts were 

recorded on a UV-Vis spectrometer (Lambda 750) within the range of 200 - 1100 nm. Photoluminescence 

spectra (PL) of the catalysts were carried out on a spectrophotometer (LabRAM HR Evolution).

Electrochemical measurements

Electrochemical and photoelectrochemical measurements were carried out on an electrochemical 

workstation (CHI 660E, Shanghai) with a standard three-electrode system. The powder coated on indium-

tin-oxide (ITO) glass substrate was applied as the working electrode. 10 mg powder was suspended into 1 

mL absolute ethanol and then the slurry was dropwise added on a ITO substrate (15 mm × 30 mm). The 

working electrode was exposed to air for 10 h to remove the ethanol. Platinum wire and Ag/AgCl electrode 

were used as the counter electrode and reference electrode, respectively. The electrolyte was 0.1 M Na2SO4 

solution and illumination source was a 300 W Xe lamp providing simulated solar light. 

EPR measurements

EPR spectra using TEMP as a trapping agent were recorded using a Wilmad WG-810-A quartz flat 

cell in a mixture of O2
-substrated H2O/MeOH (1:4 v/v) of BCT (4 mg mL-1) and TEMP (1.2 M). ESR 

spectra utilizing DMPO as a trapping agent were recorded using a Wilmad WG-810-A quartz flat cell in a 

mixture in O2
-substrated H2O/MeOH (1:4 v/v) of BCT (4 mg mL-1) and DMPO (1.8 M). ESR analysis was 

carried out at microwave frequency of 9.21 GHz at 298 K in the dark or under visible light ( > 420 nm).

Computational methodologies and models

First-principle density-functional-theory (DFT) calculations have been performed through the Vienna 

ab initio simulation package (VASP) code.1, 2 The electron-ion interactions were treated via the projector 

augmented wave (PAW)3 method. The electronic exchange and correlation effects were approximated with 
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the Perdew-Burke-Ernzerhof (PBE)-type of generalized gradient approximation (GGA).4 The cut-off 

energy for plane wave is set to 480 eV. The energy criterion is set to 10−4 eV in the iterative solution of the 

Kohn-Sham equation. To avoid interlaminar interactions, a vacuum spacing of 20 Å is applied 

perpendicular to the slab. The Brillouin zone integration is performed using a 2×2×1 k-mesh. All the 

structures are relaxed until the residual forces on the atoms have declined to less than 0.05 eV/Å. To 

improve the accuracy of the electronic properties, the Hubbard U correction5 for the on-site Coulomb (4 eV 

for Ti and 5 eV for Ce) is applied. Using pre-optimized bulk lattice parameters and atomic coordinates, the 

interfacial configuration was constructed by coupling the (001) surface of the UiO-66 with the (001) surface 

of BiOCl. Data analysis and visualization are carried out with the help of VASPKIT6 code and VESTA7. 

The adhesive energy Eads is expressed as

     (1)𝐸𝑎𝑑𝑠, 𝐵𝑖𝑂𝐶𝑙/𝑀𝑂𝐹 ‒ 𝐶7𝐻9𝑁 = 𝐸𝐵𝑖𝑂𝐶𝑙/𝑀𝑂𝐹 ‒ 𝐶7𝐻9𝑁 ‒ 𝐸𝐵𝑖𝑂𝐶𝑙/𝑀𝑂𝐹 ‒ 𝐸𝐶7𝐻9𝑁

     (2)𝐸𝑎𝑑𝑠, 𝐵𝑖𝑂𝐶𝑙 ‒ 𝐶7𝐻9𝑁 = 𝐸𝐵𝑖𝑂𝐶𝑙 ‒ 𝐶7𝐻9𝑁 ‒ 𝐸𝐵𝑖𝑂𝐶𝑙 ‒ 𝐸𝐶7𝐻9𝑁
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a b

Fig. S1 a) XRD patterns, and b) Fourier transform infrared spectra of BiOCl, UiO-66(Ce/Ti) and BCT.

Fig. S2 SEM images and XRD before and after the photocatalytic reaction.



S5

Fig. S3 UV-vis diffuse reflectance spectra of the obtained materials.

Fig. S4 XPS-VB spectra of the samples.
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Fig. S5 Mott-Schottky plots of pure BiOCl and UiO-66(Ce/Ti). Experimental conditions: the sample coated on indium-tin-oxide 

(ITO) glass substrate was applied as the working electrode, Platinum wire and Ag/AgCl electrode were used as the counter 

electrode and reference electrode, respectively, and 0.1 M Na2SO4 solution as the electrolyte.

Fig. S6 Total density of states and local density of states of the samples.
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a b c

   

Fig. S7 (a)Full XPS spectra of the samples. High-resolution XPS spectra of (a) C 1s, (b) O 1s in the samples. 

Fig. S8 EPR spectra of samples without UV-Vis irradiation.
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a b c

Fig. S9 (a) The aniline solution after adding KMnO4. (b) Add the aniline solution to the KMnO4 with mechanical stirring for 5 

min. (c) After filtering the catalyst and light-catalyzed reaction for 30 min, add KMnO4 to the aniline solution. Reaction 

conditions: KMnO4（1μmol）, benzylamine (0.2 mmol), catalysts (20 mg), H2O (3 mL), O2 atmosphere, visible light (λ＞400 

nm). 
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Table S1. Comparison of the photocatalytic activity of BiOCl/UiO-66(Ce/Ti) (BCT) composite with different heterogeneous 

catalysts for the selective oxidation of benzylamine.

Entry Catalysts Conditions Yield [%]

1 BCT in this work 1 atm O2, 3 ml H2O, white LEDs (λ > 
400 nm), 6 h 98

2 B-BO-1,3,58 1 atm O2, 3 ml CH3CN, 23 W energy 
saving fluorescent light bulb, 24 h 22

3 TCPP-CMP9 1 atm O2, 10 ml CH3CN, 100 W white 
LED, 48 h 76

4 BiOBr-OV10 In air, 1 ml CH3CN, Xe lamp (300 W, 
> 420 nm), 12 h 96

5 NH2-MIL-125(Ti)11 In air, 2 ml CH3CN, Xe lamp (300 W, 
> 420 nm), 12 h 73

6 Tx-CMP12 1 atm O2, 5 ml ACN, Natural sunlight, 
4 h 78

7 Au-Pt/Cu7S4-Cu9S8
13 1 atm O2, 4 ml DMF, 300 W xenon 

lamp, 1.5 h 99

8 ZnTEPP-PBI14 1 atm O2, 24 ml MeCN, white LED (90 
mW/cm2), 4 h 99

9 WS2
15 50°C, 1 atm O2, NMP/ACN (10 ml, 

3:7), 60 W white LED lamp, 30 h 93

10 Cu2O/CQD16 1 atm O2, 10 ml CAN, 20 W white LED 
light, 8 h 95

11 ATA-BiOCl17 1 atm O2, 5 ml ACN, 15 W fluorescent 
lamp, 24 h 95



S10

12 Au@DUT-67(Zr)18 0.1 MPa O2, 1 mL DMF, visible light 
(λ ≥ 400 nm), 6h 68
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