Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information (SI)

Construction of S-scheme heterojunctions of Ti doped Ce-MOF and BiOCl for efficient photocatalytic selective oxidation of amines

Danxia Zhao,^{*a,b} Pengyu Wu^c, Huayue Zhu^{a,b}, Ru jiang^{a,b}, Jingwei Chen^a, Chuhan Qiu^a, Shengtao Jiang^a and Guoping Lu^d*

^a Institute of Environmental Engineering Technology, Taizhou University, Taizhou 318000, Zhejiang, P. R. China *.

*b Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, P. R. China *. E-mail: danxia@tzc.edu.cn; danxia@126.com.*

c Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu 224051, P. R. China.

d Nanjing University of Science and Technology, School of Chemical Engineering, 200 Xiaoling Wei, Nanjing, Jiangsu 210094, P. R. China. E-mail: <u>glu@njust.edu.cn</u>.

Preparation of UiO-66(Ce/Ti)S1
Preparation of BiOCl/UiO-66(Ce/Ti) (BCT)S1
Characterization of photocatalystsS1
Electrochemical measurements
EPR measurementsS2
Computational methodologies and modelsS2
Fig. S1 XRD patterns and Fourier transform infrared spectraS4
Fig. S2 SEM images and XRD before and after the photocatalytic reactionS4
Fig. S3 UV-vis diffuse reflectance spectraS5
Fig. S4 XPS-VB spectra of the samplesS5
Fig. S5 Mott-Schottky plots of pure BiOCl and UiO-66(Ce/Ti)S6
Fig. S6 Total density of states and local density of states of the samplesS6
Fig. S7 XPS spectraS7
Fig. S8 EPR spectraS7
Fig. S9 H ₂ O ₂ validation experimentS8
Table S1. Comparison of the photocatalytic activity S9
References

Experimental

Preparation of UiO-66(Ce/Ti)

The bimetallic UiO-66(Ce/Ti) was prepared by incorporating Ti into UiO-66(Ce) via facile cation exchange. The $TiCp_2Cl_2$ (97.5 mg) and the UiO-66(Ce) crystals (130 mg) were mixed in 25 mL DMF with vigorous stirring. The obtained homogeneous liquid was transferred to a 50 mL round-bottom flask, and kept at 100 °C for 3 h and then cooled down to the room temperature. The product UiO-66(Ce/Ti) was collected by centrifugation and washed three times with DMF and ethanol respectively. The resultant UiO-66(Ce/Ti) crystals were collected and dried under vacuum at 80 °C before use.

Preparation of BiOCl/UiO-66(Ce/Ti) (BCT)

In a typical procedure, 200 mg UiO-66(Ce/Ti) and 5 mmol KMnO₄ were each dissolved in 20 ml of de-ionized water, and the former was ultrasonically dispersed for 30 min to form a homogeneous suspension (denoted as solution A). 5 mmol BiCl₃ was dissolved in 30 ml ethylene glycol to form a homogeneous solution B. Subsequently, the prepared A and B solution was added dropwise to the KMnO₄ solution under continuous stirring. After 2 h, the obtained mixture was moved to a 100 mL Teflon-lined stainless steel autoclave and heated at 160 °C for 6 h and a brown powder product was obtained. Finally, the resultant BiOCl/UiO-66(Ce/Ti) compound (named as BCT) was centrifuged and washed with de-ionized water and ethanol several times before being dried at 70 °C for 12 h. For comparison, the pure BiOCl was prepared according to the same procedure except for the precursor without UiO-66(Ce/Ti) crystals.

Experimental Methods

Characterization of photocatalysts

X-ray diffractometry (XRD) using a Shimadzu XRD-6000 diffractometer with Cu K α irradiation. Fourier transform infrared (FTIR) spectroscopy was performed at 8 cm⁻¹ resolution in the range of 400-4000 cm⁻¹ on a Nicolet iS10 FTIR spectrometer. Scanning electron microscopy (SEM) images was performed using a Hitachi S-4800. TEM images were taken using a PHILIPS Tecnai 12 microscope operating at 120 kv. Energy Dispersive X-ray Spectroscopic analysis (EDS) was performed with a JEM- 2010(HR) transmission electron microscope at an acceleration voltage of 200kV. High Resolution Transmission electron microscopy (HRTEM) was performed on Philips-FEI Tecnai G2 F20 operating at 300kv. In addition, the in situ XPS measurements were carried out on an ESCALAB 250Xi spectrometer (Thermo Scientific, USA) under light irradiation (365-800nm) or dark conditions. All samples were analyzed under a pressure of less than 1.0×10^{-9} Pa. Spectra were acquired through the avantage software (Version 5.979) with a step of 0.05 e V. The UV-Vis diffuse reflectance spectra of the catalysts were recorded on a UV-Vis spectrometer (Lambda 750) within the range of 200 - 1100 nm. Photoluminescence spectra (PL) of the catalysts were carried out on a spectrophotometer (LabRAM HR Evolution).

Electrochemical measurements

Electrochemical and photoelectrochemical measurements were carried out on an electrochemical workstation (CHI 660E, Shanghai) with a standard three-electrode system. The powder coated on indium-tin-oxide (ITO) glass substrate was applied as the working electrode. 10 mg powder was suspended into 1 mL absolute ethanol and then the slurry was dropwise added on a ITO substrate (15 mm \times 30 mm). The working electrode was exposed to air for 10 h to remove the ethanol. Platinum wire and Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively. The electrolyte was 0.1 M Na₂SO₄ solution and illumination source was a 300 W Xe lamp providing simulated solar light.

EPR measurements

EPR spectra using TEMP as a trapping agent were recorded using a Wilmad WG-810-A quartz flat cell in a mixture of O₂-substrated H₂O/MeOH (1:4 v/v) of BCT (4 mg mL⁻¹) and TEMP (1.2 M). ESR spectra utilizing DMPO as a trapping agent were recorded using a Wilmad WG-810-A quartz flat cell in a mixture in O₂-substrated H₂O/MeOH (1:4 v/v) of BCT (4 mg mL-1) and DMPO (1.8 M). ESR analysis was carried out at microwave frequency of 9.21 GHz at 298 K in the dark or under visible light ($\lambda > 420$ nm).

Computational methodologies and models

First-principle density-functional-theory (DFT) calculations have been performed through the Vienna ab initio simulation package (VASP) code.^{1, 2} The electron-ion interactions were treated via the projector augmented wave (PAW)³ method. The electronic exchange and correlation effects were approximated with

the Perdew-Burke-Ernzerhof (PBE)-type of generalized gradient approximation (GGA).⁴ The cut-off energy for plane wave is set to 480 eV. The energy criterion is set to 10^{-4} eV in the iterative solution of the Kohn-Sham equation. To avoid interlaminar interactions, a vacuum spacing of 20 Å is applied perpendicular to the slab. The Brillouin zone integration is performed using a $2 \times 2 \times 1$ k-mesh. All the structures are relaxed until the residual forces on the atoms have declined to less than 0.05 eV/Å. To improve the accuracy of the electronic properties, the Hubbard U correction⁵ for the on-site Coulomb (4 eV for Ti and 5 eV for Ce) is applied. Using pre-optimized bulk lattice parameters and atomic coordinates, the interfacial configuration was constructed by coupling the (001) surface of the UiO-66 with the (001) surface of BiOCl. Data analysis and visualization are carried out with the help of VASPKIT⁶ code and VESTA⁷. The adhesive energy E_{ads} is expressed as

$$E_{ads, BiOCl/MOF - C7H9N} = E_{BiOCl/MOF - C7H9N} - E_{BiOCl/MOF} - E_{C7H9N}$$
(1)

 $E_{ads, BiOCl - C7H9N} = E_{BiOCl - C7H9N} - E_{BiOCl} - E_{C7H9N}$ (2)

Fig. S1 a) XRD patterns, and b) Fourier transform infrared spectra of BiOCl, UiO-66(Ce/Ti) and BCT.

Fig. S2 SEM images and XRD before and after the photocatalytic reaction.

Fig. S3 UV-vis diffuse reflectance spectra of the obtained materials.

Fig. S4 XPS-VB spectra of the samples.

Fig. S5 Mott-Schottky plots of pure BiOCl and UiO-66(Ce/Ti). Experimental conditions: the sample coated on indium-tin-oxide (ITO) glass substrate was applied as the working electrode, Platinum wire and Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively, and 0.1 M Na₂SO₄ solution as the electrolyte.

Fig. S6 Total density of states and local density of states of the samples.

Fig. S7 (a)Full XPS spectra of the samples. High-resolution XPS spectra of (a) C 1s, (b) O 1s in the samples.

Fig. S8 EPR spectra of samples without UV-Vis irradiation.

Fig. S9 (a) The aniline solution after adding KMnO₄. (b) Add the aniline solution to the KMnO₄ with mechanical stirring for 5 min. (c) After filtering the catalyst and light-catalyzed reaction for 30 min, add KMnO₄ to the aniline solution. Reaction conditions: KMnO4 (1µmol), benzylamine (0.2 mmol), catalysts (20 mg), H₂O (3 mL), O₂ atmosphere, visible light (λ >400 nm).

Table S1. Comparison of the photocatalytic activity of BiOCl/UiO-66(Ce/Ti) (BCT) composite with different heterogeneous catalysts for the selective oxidation of benzylamine.

Entry	Catalysts	Conditions	Yield [%]
1	BCT in this work	1 atm O ₂ , 3 ml H ₂ O, white LEDs (λ > 400 nm), 6 h	98
2	B-BO-1,3,5 ⁸	1 atm O ₂ , 3 ml CH ₃ CN, 23 W energy saving fluorescent light bulb, 24 h	22
3	TCPP-CMP ⁹	1 atm O ₂ , 10 ml CH ₃ CN, 100 W white LED, 48 h	76
4	BiOBr-OV ¹⁰	In air, 1 ml CH ₃ CN, Xe lamp (300 W, > 420 nm), 12 h	96
5	NH2-MIL-125(Ti) ¹¹	In air, 2 ml CH ₃ CN, Xe lamp (300 W, > 420 nm), 12 h	73
6	Tx-CMP ¹²	1 atm O ₂ , 5 ml ACN, Natural sunlight, 4 h	78
7	Au-Pt/Cu ₇ S ₄ -Cu ₉ S ₈ ¹³	1 atm O_2 , 4 ml DMF, 300 W xenon lamp, 1.5 h	99
8	ZnTEPP-PBI ¹⁴	1 atm O ₂ , 24 ml MeCN, white LED (90 mW/cm ²), 4 h	99
9	WS ₂ ¹⁵	50°C, 1 atm O ₂ , NMP/ACN (10 ml, 3:7), 60 W white LED lamp, 30 h	93
10	Cu ₂ O/CQD ¹⁶	1 atm O ₂ , 10 ml CAN, 20 W white LED light, 8 h	95
11	ATA-BiOCl ¹⁷	1 atm O ₂ , 5 ml ACN, 15 W fluorescent lamp, 24 h	95

12	Au@DUT-67(Zr) ¹⁸	0.1 MPa O ₂ , 1 mL DMF, visible light $(\lambda \ge 400 \text{ nm})$, 6h	68
12	$\operatorname{Au}(\omega)$ DO 1-07(ZI) ⁻²	$(\lambda \ge 400 \text{ nm}), 6h$	08

References

- 1. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Physical Review B*, 1999, **59**, 1758-1775.
- G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Computational Materials Science*, 1996, 6, 15-50.
- 3. P. E. Blöchl, Projector augmented-wave method, *Physical Review B*, 1994, **50**, 17953-17979.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Physical Review Letters*, 1996, **77**, 3865-3868.
- 5. A. Majid, M. Azmat, U. A. Rana, S. U.-D. Khan and E. Alzahrani, A computational study of magnetic exchange interactions of 3d and 4f electrons in Ti-Ce co-doped AlN, *Materials Chemistry and Physics*, 2016, **179**, 316-321.
- 6. V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, *Computer Physics Communications*, 2021, **267**, 108033.
- K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, *Journal of Applied Crystallography*, 2008, 41, 653-658.
- Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, Molecular Structural Design of Conjugated Microporous Poly(Benzooxadiazole) Networks for Enhanced Photocatalytic Activity with Visible Light, *Advanced Materials*, 2015, 27, 6265-6270.
- J. Jiang, Z. Liang, X. Xiong, X. Zhou and H. Ji, A Carbazolyl Porphyrin-Based Conjugated Microporous Polymer for Metal-Free Photocatalytic Aerobic Oxidation Reactions, *ChemCatChem*, 2020, 12, 3523-3529.
- H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan and Y. Xie, Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation, *Journal of the American Chemical Society*, 2018, 140, 1760-1766.
- D. Sun, L. Ye and Z. Li, Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH₂-MIL-125(Ti), *Applied Catalysis B: Environmental*, 2015, 164, 428-432.
- V. R. Battula, H. Singh, S. Kumar, I. Bala, S. K. Pal and K. Kailasam, Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer, ACS Catalysis, 2018, 8, 6751-6759.
- 13. H. Gao, Y. Chen, H. Li, F. Zhang and G. Tian, Hierarchical Cu₇S₄-Cu₉S₈ heterostructure hollow cubes for photothermal aerobic oxidation of amines,

Chemical Engineering Journal, 2019, 363, 247-258.

- X.-X. Guo, J. Jiang, Q. Han, X.-H. Liu, X.-T. Zhou and H.-B. Ji, Zinc porphyrinbased electron donor–acceptor-conjugated microporous polymer for the efficient photocatalytic oxidative coupling of amines under visible light, *Applied Catalysis* A: General, 2020, **590**, 117352.
- F. Raza, J. H. Park, H.-R. Lee, H.-I. Kim, S.-J. Jeon and J.-H. Kim, Visible-Light-Driven Oxidative Coupling Reactions of Amines by Photoactive WS₂ Nanosheets, ACS Catalysis, 2016, 6, 2754-2759.
- A. Kumar, A. Hamdi, Y. Coffinier, A. Addad, P. Roussel, R. Boukherroub and S. L. Jain, Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst, *Journal of Photochemistry and Photobiology A: Chemistry*, 2018, **356**, 457-463.
- A. Han, J. Sun, H. Zhang, G.-K. Chuah and S. Jaenicke, Visible Light Induced Selective Aerobic Formation of N-benzylidene Benzylamine over 2aminoterephthalic Acid Sensitized {110}-Facetted BiOCl Nanosheets, *ChemCatChem*, 2019, 11, 6425-6430.
- C. Liu, Y. Liu, Y. Shi, Z. Wang, W. Guo, J. Bi and L. Wu, Au nanoparticlesanchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light, *Journal of Colloid and Interface Science*, 2023, 631, 154-163.