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Experimental

Preparation of UiO-66(Ce/Ti)

The bimetallic UiO-66(Ce/T1) was prepared by incorporating Ti into UiO-66(Ce) via facile cation
exchange. The TiCp,Cl, (97.5 mg) and the UiO-66(Ce) crystals (130 mg) were mixed in 25 mL DMF with
vigorous stirring. The obtained homogeneous liquid was transferred to a 50 mL round-bottom flask, and
kept at 100 °C for 3 h and then cooled down to the room temperature. The product UiO-66(Ce/Ti) was
collected by centrifugation and washed three times with DMF and ethanol respectively. The resultant UiO-

66(Ce/Ti) crystals were collected and dried under vacuum at 80 °C before use.
Preparation of BiOCl/UiO-66(Ce/Ti) (BCT)

In a typical procedure, 200 mg UiO-66(Ce/T1) and 5 mmol KMnO, were each dissolved in 20 ml of
de-ionized water, and the former was ultrasonically dispersed for 30 min to form a homogeneous suspension
(denoted as solution A). 5 mmol BiCl; was dissolved in 30 ml ethylene glycol to form a homogeneous
solution B. Subsequently, the prepared A and B solution was added dropwise to the KMnQO, solution under
continuous stirring. After 2 h, the obtained mixture was moved to a 100 mL Teflon-lined stainless steel
autoclave and heated at 160 °C for 6 h and a brown powder product was obtained. Finally, the resultant
BiOCl/UiO-66(Ce/T1) compound (named as BCT) was centrifuged and washed with de-ionized water and
ethanol several times before being dried at 70 °C for 12 h. For comparison, the pure BiOCl was prepared

according to the same procedure except for the precursor without UiO-66(Ce/Ti) crystals.

Experimental Methods

Characterization of photocatalysts

X-ray diffractometry (XRD) using a Shimadzu XRD-6000 diffractometer with Cu Ka irradiation.
Fourier transform infrared (FTIR) spectroscopy was performed at 8 cm™' resolution in the range of 400-
4000 cm™!' on a Nicolet iS10 FTIR spectrometer. Scanning electron microscopy (SEM) images was
performed using a Hitachi S-4800. TEM images were taken using a PHILIPS Tecnai 12 microscope
operating at 120 kv. Energy Dispersive X-ray Spectroscopic analysis (EDS) was performed with a JEM-
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2010(HR) transmission electron microscope at an acceleration voltage of 200kV. High Resolution
Transmission electron microscopy (HRTEM) was performed on Philips-FEI Tecnai G2 F20 operating at
300kv. In addition, the in situ XPS measurements were carried out on an ESCALAB 250Xi spectrometer

(Thermo Scientific, USA) under light irradiation (365-800nm) or dark conditions. All samples were
analyzed under a pressure of less than 1.0 X 10 Pa. Spectra were acquired through the avantage software

(Version 5.979) with a step of 0.05 e V. The UV-Vis diffuse reflectance spectra of the catalysts were
recorded on a UV-Vis spectrometer (Lambda 750) within the range of 200 - 1100 nm. Photoluminescence

spectra (PL) of the catalysts were carried out on a spectrophotometer (LabRAM HR Evolution).
Electrochemical measurements

Electrochemical and photoelectrochemical measurements were carried out on an electrochemical
workstation (CHI 660E, Shanghai) with a standard three-electrode system. The powder coated on indium-
tin-oxide (ITO) glass substrate was applied as the working electrode. 10 mg powder was suspended into 1
mL absolute ethanol and then the slurry was dropwise added on a ITO substrate (15 mm x 30 mm). The
working electrode was exposed to air for 10 h to remove the ethanol. Platinum wire and Ag/AgCl electrode
were used as the counter electrode and reference electrode, respectively. The electrolyte was 0.1 M Na,SO4

solution and illumination source was a 300 W Xe lamp providing simulated solar light.
EPR measurements

EPR spectra using TEMP as a trapping agent were recorded using a Wilmad WG-810-A quartz flat
cell in a mixture of O, substrated HO/MeOH (1:4 v/v) of BCT (4 mg mL") and TEMP (1.2 M). ESR
spectra utilizing DMPO as a trapping agent were recorded using a Wilmad WG-810-A quartz flat cell in a
mixture in O, substrated H,O/MeOH (1:4 v/v) of BCT (4 mg mL-1) and DMPO (1.8 M). ESR analysis was

carried out at microwave frequency of 9.21 GHz at 298 K in the dark or under visible light (A > 420 nm).

Computational methodologies and models

First-principle density-functional-theory (DFT) calculations have been performed through the Vienna
ab initio simulation package (VASP) code.!: 2 The electron-ion interactions were treated via the projector

augmented wave (PAW)? method. The electronic exchange and correlation effects were approximated with
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the Perdew-Burke-Ernzerhof (PBE)-type of generalized gradient approximation (GGA).* The cut-off
energy for plane wave is set to 480 eV. The energy criterion is set to 107 eV in the iterative solution of the
Kohn-Sham equation. To avoid interlaminar interactions, a vacuum spacing of 20 A is applied
perpendicular to the slab. The Brillouin zone integration is performed using a 2X2X 1 k-mesh. All the
structures are relaxed until the residual forces on the atoms have declined to less than 0.05 eV/A. To
improve the accuracy of the electronic properties, the Hubbard U correction’ for the on-site Coulomb (4 eV
for Ti and 5 eV for Ce) is applied. Using pre-optimized bulk lattice parameters and atomic coordinates, the
interfacial configuration was constructed by coupling the (001) surface of the UiO-66 with the (001) surface
of BiOCl. Data analysis and visualization are carried out with the help of VASPKIT® code and VESTA.

The adhesive energy E, 4 is expressed as
E was, Biociymor - c7ion = Epiociymor - c7ron — Epiociymor = Ec7ron (D

E ads, BiOCl - C7THON = Egioci-c7ron = Epioct = Ec7ron (2)
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Fig. S1 a) XRD patterns, and b) Fourier transform infrared spectra of BiOCl, UiO-66(Ce/Ti) and BCT.
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Fig. S2 SEM images and XRD before and after the photocatalytic reaction.
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Fig. S3 UV-vis diffuse reflectance spectra of the obtained materials.
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Fig. S4 XPS-VB spectra of the samples.
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Fig. S5 Mott-Schottky plots of pure BiOCl and UiO-66(Ce/Ti). Experimental conditions: the sample coated on indium-tin-oxide

(ITO) glass substrate was applied as the working electrode, Platinum wire and Ag/AgCl electrode were used as the counter
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Fig. S6 Total density of states and local density of states of the samples.
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Fig. S7 (a)Full XPS spectra of the samples. High-resolution XPS spectra of (a) C 1s, (b) O 1s in the samples.
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Fig. S8 EPR spectra of samples without UV-Vis irradiation.
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Fig. S9 (a) The aniline solution after adding KMnO,. (b) Add the aniline solution to the KMnO, with mechanical stirring for 5
min. (c) After filtering the catalyst and light-catalyzed reaction for 30 min, add KMnQO, to the aniline solution. Reaction
conditions: KMnO4 (1pmol) , benzylamine (0.2 mmol), catalysts (20 mg), H,O (3 mL), O, atmosphere, visible light (A>400

nm).
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Table S1. Comparison of the photocatalytic activity of BiOCI/UiO-66(Ce/Ti) (BCT) composite with different heterogeneous

catalysts for the selective oxidation of benzylamine.

Entry Catalysts Conditions Yield [%]
1 BCT in this work clma(:l:n(l))f’ 63hm' H;0, white LEDs (2.> 98
2 B-BO-1,3,5° ;aigﬁqg (f)li;osrelsiler(l:tlfi;(}:llt\]‘;)jli,\;}4?ergy 22
3 TCPP-CMP® 1 atm Oy, 10 rr]ilE%I’{Z(éI\}Il, 100 W white 76
4 BiOBr-OV!0 I>n4a2ig, nlmn)l} 1C2}1113CN, Xe lamp (300 W, 9%
5 NH2-MIL-125(Ti)!" o fmr;il CHEN, Xe famp (300 W, 73
6 Tx-CMP2 411 Etrn 0,, 5 ml ACN, Natural sunlight, 73
7 Au-PY/CusS4-CusSg' llar;aq‘flil 1952,114 ml DMF, 300 W xenon 99
2 ZnTEPP-PBI' rlne\‘;/rjlc I(I)é’) ’2: }rlnl MeCN, white LED (90 99
: W | damos e G0 |,
10 Cu,0/CQDI6 111;13:,180121, 10 ml CAN, 20 W white LED 95
1 ATA-BiOCI!7 1 atm O,, 5 ml ACN, 15 W fluorescent 95

lamp, 24 h
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Au@DUT-67(Zr)'$
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