Supporting Information

Durable Dielectric Switching and Photo-responsivity in a Dion-Jacobson Hybrid Perovskite Semiconductor

Peng Wang, ${ }^{\text {a,b }}$ Xinling Li, ${ }^{\text {a,b }}$ Huang Ye, ${ }^{\text {b,d }}$ Qianwen Guan, ${ }^{\text {b,d }}$ Yifei Wang, ${ }^{\text {b,d }}$ Yaru Geng, ${ }^{\text {b }}$
Chengshu Zhang, ${ }^{\text {b,d }}$ Hang Lib,d and Junhua Luo ${ }^{\text {*a,b,,,d }}$

${ }^{\text {a }}$ College of Chemistry, Fuzhou University, Fuzhou 350116, China
${ }^{\text {b }}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. Email: jhluo@fjirsm.ac.cn
c Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
${ }^{\text {d }}$ University of Chinese Academy of Sciences, Beijing, 100049, China.

Experimental Section

Materials: Lead (II) acetate trihydrate $\left(\mathrm{Pb}(\mathrm{AC})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 99.5 \%\right.$, AR$)$, hydrobromic acid ($\mathrm{HBr}, 48 \%$), 1,4-butanediamine (BDA, 98%), methylamine (MA, 30% in $\mathrm{H}_{2} \mathrm{O}$) are used as received from Aladdin without further purification.

Synthesis and crystal growth: MA $(5 \mathrm{mmol}, 0.4 \mathrm{~g})$ and $\mathrm{Pb}(\mathrm{Ac})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mmol}, 3.67$ g) were dissolved in 20 ml of hydrobromic acid with stirring for 10 minutes at room temperature. Then 1,4-butanediamine ($10 \mathrm{mmol}, 0.810 \mathrm{~g}$) was added to the mixed solution until the precipitate was completely dissolved by heating. The yellow transparent crystals of $\mathbf{1}$ were obtained after 24 h . Meanwhile, bulk single crystals were grown by the temperature-cooling method from its saturated solution at a rate of 0.2 K d^{-1}.

Single crystal structure determination and Powder X-ray diffraction: Single crystal X-ray diffraction (XRD) experiments were performed on a Bruker APEX-II diffractometer with $\mathrm{Mo} \mathrm{K} \alpha$ radiation, operating at 50 kV and 40 mA . The structures were solved by direct method and refined by full-matrix least-squares on F2 using the SHELX package. The structure-solving and refinement processes were conducted in the Olex2 software. Powder X-ray diffraction(PXRD) data was obtained by Rigaku Miniflex600 powder X-ray diffractometer with the 2θ range of $5^{\circ}-50^{\circ}$ at room temperature.

Thermal analyses: The thermogravimetric analysis data were obtained by using Mettler Toledo TGA/SDTA 851e. Differential scanning calorimetry (DSC) analysis was performed on NETZCSCH DSC 200 F3 equipment within the temperature range of $250-375 \mathrm{~K}$. The measurement was performed in a nitrogen atmosphere with a scanning rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$.

Dielectric constant measurements: The pressed-powder pellets and bulk crystals coated with silver conduction paste of $\mathbf{1}$ were employed for the dielectric experiments. The TH2828A Precision LCR meter was used to conduct the variable-temperature dielectric measurements within the respective frequency of $10 \mathrm{kHz}, 100 \mathrm{kHz}, 300 \mathrm{kHz}$, 500 kHz , and 1000 kHz , and the temperature range of $235-350 \mathrm{~K}$.

UV-Vis-NIR Diffuse Reflectance Spectroscopy: UV-vis diffuse reflectance spectra of desired materials were performed at room temperature on Perkin-Elmer Lambda 900 UV-vis spectrophotometer in the variable wavelength range between 250 to 800 nm . The anhydrous BaSO_{4} powder was used as the 100% reflectance reference, and the powdered crystal was used for the measurements.

Computational description: The crystal structural data at LTP of $\mathbf{1}$ was used for the first-principles density functional theory (DFT) calculations. Partial density of states (PDOS) and band structure were calculated by the total-energy code CASTEP. Under the generalized gradient approximation, the Kleinman-Bylander form of normconserving pseudopotentials was employed to model interactions between ionic cores and electrons. The high cut-off energy of 820 eV and the k-point sampling of the Brillouin zone of $2 \times 2 \times 1$ were set for 1 , respectively. The following orbital electrons were treated as valence electrons: $\mathrm{Pb} 6 s^{2} 6 p^{2}, \operatorname{Br} 4 s^{2} 4 p^{5}, \mathrm{C} 2 s^{2} 2 p^{2}, N 2 s^{2} 2 p^{3}$, and $H 1 s^{1}$.

Photodetection property measurements: The temperature-dependent conductivity of 1 was measured along the a-, b-, and c-axis crystal direction ranging from 300 to 400 K. During photoelectric measurement, the $I-V$ curves of the detectors were measured under the light of 405 nm . (LP405-MF300) serves as the light source, and a PM100D optical power meter is used to measure the light intensity. A Keithley 6517B source meter was installed on the device and the photo-response was measured in the visible light range at room temperature. The response time was recorded using a high-speed Tektronix DS1052E oscilloscope.

Fig S1. A schematic showing the growth of single crystals.

Fig S2. Experimental and simulated powder X-ray diffraction patterns for $\mathbf{1}$.

Fig S3. SEM image of $\mathbf{1}$.

Fig S4. The equatorial angles of the inorganic layer in $\mathbf{1}$.

Fig S5. (a) The dielectric constant curves of $\mathbf{1}$ under different frequency. (b) Dielectric constants curves of $\mathbf{1}$ measured along the a-, b - and c-axis at 1000 KHz .

Fig S6. PL spectra of $\mathbf{1}$.

Table S1. Crystal data and structure refinements for $\mathbf{1}$ collected at LTP and HTP.

Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{26} \mathrm{Br}_{10} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{26} \mathrm{Br}_{10} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$
Formula weight	1574.98	1574.98
Temperature [K]	297.34(10)	343.02
Crystal system	orthorhombic	orthorhombic
Space group (number)	Pnma	Cmcm
$a[\AA]$	8.3682(5)	8.3213(4)
$b[\AA]$	43.331(3)	8.4780(6)
$c[\AA]$	8.3003(5)	42.894(3)
$\alpha\left[^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	90
$\mathrm{V}\left[^{\circ}\right]$	90	90
Volume [\AA^{3}]	3009.7(3)	3026.1(3)
Z	4	4
$\rho_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	3.476	3.457
$\mu\left[\mathrm{mm}^{-1}\right]$	30.018	29.855
$F(000)$	2744.0	2744.0
Radiation	Mo $K_{\alpha}(\lambda=0.71073 \AA)$	Mo $K_{a}(\lambda=0.71073 \AA)$
2θ range [${ }^{\circ}$]	4.996 to 60.894	7.12 to 55.006
Index ranges	$-8 \leq h \leq 11$,	$-10 \leq h \leq 10$,
	$-54 \leq \mathrm{k} \leq 45$,	$-11 \leq k \leq 10$,
	$-10 \leq 1 \leq 10$	$-55 \leq 1 \leq 55$
Reflections collected	15044	12113
Independent reflections	$3702\left[\mathrm{R}_{\text {int }}=0.0686, \mathrm{R}_{\text {sigma }}=0.0521\right]$	$1879\left[\mathrm{R}_{\text {int }}=0.0658, \mathrm{R}_{\text {sigma }}=0.0504\right]$
Data/restraints/parameters	3702/0/113	1879/40/90
Goodness-of-fit on F^{2}	1.077	1.107
Final R indexes [l>=2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0611, \mathrm{wR}_{2}=0.1450$	$\mathrm{R}_{1}=0.0592, \mathrm{wR}_{2}=0.1697$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0803, \mathrm{wR}_{2}=0.1562$	$\mathrm{R}_{1}=0.0791, \mathrm{wR}_{2}=0.1851$
Largest diff. peak/hole / e \AA^{-3}	2.31/-3.37	2.87/-2.72

Table S2. The bond lengths of $\mathbf{1}$ at LTP and HTP.

	LTP		HTP
$\mathrm{Pb} 1-\mathrm{Br} 6$	$2.8415(14)$	$\mathrm{Pb} 1-\mathrm{Br} 2^{\# 1}$	$2.954(3)$
$\mathrm{Pb} 1-\mathrm{Br} 4^{\# 1}$	$2.9755(13)$	$\mathrm{Pb} 1-\mathrm{Br} 2$	$2.954(3)$
$\mathrm{Pb} 1-\mathrm{Br} 4$	$2.9716(14)$	$\mathrm{Pb} 1-\mathrm{Br} 1$	$2.973(3)$
$\mathrm{Pb} 1-\mathrm{Br} 5^{\# 2}$	$2.9877(14)$	$\mathrm{Pb} 1-\mathrm{Br} 1^{\# 2}$	$2.967(3)$
$\mathrm{Pb} 1-\mathrm{Br} 5$	$2.9797(13)$	$\mathrm{Pb} 1-\mathrm{Br} 1^{\# 3}$	$2.967(3)$
$\mathrm{Pb} 1-\mathrm{Br} 3$	$3.1531(14)$	$\mathrm{Pb} 1-\mathrm{Br} 1^{\# 4}$	$2.973(3)$
$\mathrm{Pb} 2-\mathrm{Br} 1^{\# 3}$	$3.0730(19)$	$\mathrm{Pb} 2-\mathrm{Br} 2$	$3.093(3)$
$\mathrm{Pb} 2-\mathrm{Br} 1$	$3.0649(19)$	$\mathrm{Pb} 2-\mathrm{Br} 3$	$2.969(2)$
$\mathrm{Pb} 2-\mathrm{Br} 2^{\# 2}$	$2.986(2)$	$\mathrm{Pb} 2-\mathrm{Br} 3{ }^{\# 5}$	$2.971(2)$
$\mathrm{Pb} 2-\mathrm{Br} 2$	$2.9924(19)$	$\mathrm{Pb} 2-\mathrm{Br} 33^{\# 3}$	$2.9695(19)$
$\mathrm{Pb} 2-\mathrm{Br} 3$	$2.9682(13)$	$\mathrm{Pb} 2-\mathrm{Br} 4$	$2.971(2)$
$\mathrm{Pb} 2-\mathrm{Br} 3^{\# 4}$	$2.9682(13)$	$2.868(4)$	

Table S3. The bond angles of $\mathbf{1}$ at LTP.

Atom-Atom-Atom	Angle [${ }^{\circ}$]	Atom-Atom-Atom	Angle [$]$
$\mathrm{Br} 6-\mathrm{Pb} 1-\mathrm{Br} 4$	$89.51(5)$	$\mathrm{Br} 2-\mathrm{Pb} 2-\mathrm{Br} 1$	$172.78(6)$
$\mathrm{Br} 6-\mathrm{Pb} 1-\mathrm{Br} 4$	$87.34(5)$	$\mathrm{Br} 2-\mathrm{Pb} 2-\mathrm{Br} 1$	$178.06(6)$
$\mathrm{Br} 6-\mathrm{Pb} 1-\mathrm{Br} 5$	$90.75(5)$	$\mathrm{Br} 2-\mathrm{Pb} 2-\mathrm{Br} 2$	$93.16(2)$
$\mathrm{Br} 6-\mathrm{Pb} 1-\mathrm{Br} 5$	$88.35(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 1$	$91.34(4)$
$\mathrm{Br} 6-\mathrm{Pb} 1-\mathrm{Br} 3$	$167.97(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 1$	$85.74(3)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 4$	$89.862(13)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 1$	$85.74(3)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 5$	$177.74(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 1$	$91.34(4)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 5$	$89.32(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2$	$94.21(3)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 5$	$91.43(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2$	$88.13(4)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 5$	$177.69(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2$	$88.13(4)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3$	$82.36(5)$	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 3$	$94.21(3)$
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3$	$84.27(4)$	$\mathrm{Pb} 2-\mathrm{Br} 1-\mathrm{Pb} 2$	$170.97(7)$
$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 5$	$89.324(14)$	$\mathrm{Pb} 2-\mathrm{Br} 2-\mathrm{Pb} 2$	$158.24(8)$
$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 3$	$99.67(5)$	$\mathrm{Pb} 1-\mathrm{Br} 4-\mathrm{Pb} 1$	$149.08(9)$
$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 3$	$97.70(5)$	$\mathrm{Pb} 1-\mathrm{Br} 5-\mathrm{Pb} 1$	$164.34(7)$
$\mathrm{Br} 1-\mathrm{Pb} 2-\mathrm{Br} 1$	$87.892(19)$	$162.12(7)$	
$\mathrm{Br} 2-\mathrm{Pb} 2-\mathrm{Br} 1$	$94.05(6)$		

Table S4. The bond angles of $\mathbf{1}$ at HTP.

Atom-Atom-Atom	Angle [${ }^{\circ}$]	Atom-Atom-Atom	Angle [${ }^{\circ}$]
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 2$	179.94(17)	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2$	90.13(9)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	89.98(6)	Br3-Pb2-Br2	90.13(9)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	90.02(6)	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 3$	178.50(13)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	89.98(6)	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 3$	91.067(5)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	90.02(6)	Br3-Pb2-Br3	87.59(11)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	89.98(6)	Br3-Pb2-Br3	90.26(11)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	90.02(6)	$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 3$	178.50(13)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	89.98(6)	Br3-Pb2-Br3	91.067(5)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	90.02(6)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 2$	168.91(9)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	91.069(5)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 3$	79.38(10)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	179.78(16)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 3$	99.85(11)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	91.069(5)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 3$	93.47(10)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	179.78(17)	Br4-Pb2-Br3	86.10(10)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	88.71(16)	Pb1-Br2-Pb2	179.67(16)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	89.15(16)	Pb1-Br1-Pb1	179.78(16)
$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2$	90.56(8)	Pb2-Br3-Pb2	178.50(13)
Br3-Pb2-Br2	90.56(9)		

