Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supplementary Information

Fast and Stable Charge Transfer at Lithium-Sulfide (Electrolyte) Interface via In-Situ Solidified Li⁺-Conductive Interlayer

Ya-Hui Wang^{a,b}, Xu-Sheng Zhang^{a,b}, Cai-Cai Li^{a,b}, Hao Zeng^{a,e}, Zhe Chen^c, Liang Zhang^d, Jin-Chi Zheng^d, Yuan Luo^d, Sen Xin^{a,b,*}, Yu-Guo Guo^{a,b}

^a CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.

^d State Grid Xinjiang Company Limited Electric Power Research Institute, Xinjiang, 830013, China.

^e Williston Northampton School, Easthampton, Massachusetts, 01027, United States.

Experimental section

Preparation of glassy $75Li_2S-25P_2S_5$ (LPS) electrolyte powder

A certain amount of lithium sulfide (Li_2S , Alfa Aesar, 99.9%) and phosphorus pentasulfide (P_2S_5 , Macklin, 99%) was weighed according to the molar ratio of 75:25, placed in an agate mortar and hand-milled for 30 minutes, then poured into a ball mill jar for high-energy ball milling (Argon atmosphere 500 rpm) for 20 hours.

Preparation of precursor solution of Li⁺-conductive interlayer (LCI)

The precursor solution of LCI was made by dissolving 2 mol L⁻¹ lithium hexafluorophosphate (LiFP₆; Alfa Aesar, 98%) and 1 mol L⁻¹ bis(trifluoromethane)sulfonimide lithium salt (LiTFSI; Sigma-aldrich 99.95% trace metals basis) into a 1, 3-dioxolane (DOL; Alfa Aesar, 99.5%, stab.) and 1, 2-dimethoxyethane (DME) (Alfa Aesar, 99+%) solvent (1:1, v/v) mixture. The decomposition of LiFP₆ triggers the ring-opening cationic polymerization of DOL monomer and thereby converting the precursor solution into LCI. All the preparation processes were conducted in an argon-filled glovebox ($O_2 < 0.1$ ppm, $H_2O < 0.1$ ppm).

Assembly of symmetrical Li|LPS|Li, Li|LPS|SS, and blocking SS|LPS|SS batteries

About 150 mg of LPS powder was weighed and put into a homemade mold with a diameter of 10 mm and then cold pressed under 360 MPa for 5 minutes. And the Li foils (Φ 12) were placed on both sides of LPS pellet followed by cold pressing under 100 MPa for 3 minutes. Similarly, the assembly of Li|LPS|SS and blocking SS|LPS|SS cells was the same as above, except that the corresponding Li foils were replaced by stainless steels. All the assembled processes were conducted in an argon-filled glovebox ($O_2 < 0.1$ ppm, $H_2O < 0.1$ ppm).

Assembly of symmetrical Li|LCI-LPS-LCI|Li batteries

About 80 mg of LPS powder was weighed and put into a homemade mold with a diameter of 10 mm and then cold pressed under 360 MPa for 5 minutes. After that, 10 μ L precursor solution was injected into the interface between LPS pallet and Li foil. Subsequently, the assembled batteries were left to stand for a period of time to form LCI completely inside the battery. All the assembled processes were conducted in an argon-filled glovebox (O₂<0.1 ppm, H₂O < 0.1 ppm).

Materials characterization

The X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) in the 2 θ range from 10° to 80° by using a sealed container to avoid oxygen. The Fourier Transform Infrared (FTIR) spectrum of the prepared LCI was recorded using VERTEX 70v in the range of 400 to 4000 cm⁻¹ to investigate the functional group of LCI. The morphology and element mapping were characterized by REGULUS SU8100 scanning electron microscopy (SEM) with an energy-dispersive X-ray spectroscopy (EDS) system. X-ray photoelectron spectroscopy (XPS) was recorded on AXIS Supra electron spectrometer using 150 W Al K α radiation (hv = 1486.6 eV).

Electrochemical measurements

Electrochemical impedance spectroscopy (EIS) measurements were investigated over the frequency range from 1 MHz to 0.1 Hz with an amplitude of 10 mV on a Princeton PARSTAT MC 1000 multi-channel electrochemical workstation. The ionic conductivity σ was calculated based on the following equation,

$$\sigma = \frac{L}{R_{SSE} \times S}$$

 $R_{SSE} \sim S$ where L is the thickness of electrolytes, R_{SSE} is the resistance according to the EIS measurement, S is the effective contact area between the electrolyte and stainless steel.

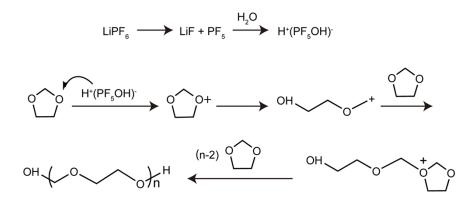
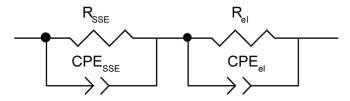
The activation energy $(E_{a(SSE)})$ of the electrolyte was obtained according to the Arrhenius equation.

$$\sigma = \frac{A}{T} exp^{[i0]}(\frac{-E_a}{K_B T})$$

where, σ (S cm⁻¹) is the ionic conductivity of the electrolyte, A is the pre-exponential factor, T (K) is the thermodynamic temperature, K_B (1.38×10²³ J K⁻¹) is the Boltzmann constant, Ea (J mol⁻¹) is the activation energy of the electrolyte.

In the temperature range of 0-80 °C, the ionic conductivity of the electrolyte was tested every 10 °C as an interval. The relationship between the ionic conductivity and temperature was drawn according to the Arrhenius equation, and the slope is $E_{a(SSE)}$.

The galvanostatic polarization and cycling measurements were conducted using a LAND battery test system (LANHE Inc. CT2001A). Galvanostatic cycling performance of Li|Li cells were tested with current density 0.1 mA cm⁻² corresponding to areal capacity of 0.1 mAh cm⁻². For the critical current density tests, the initial current density is 0.1 mA cm⁻², the deposited capacity is 0.1 mAh cm⁻². After that, Li plating and stripping was tested at a fixed capacity of 0.1 mAh cm⁻² but a step-increased current density from 0.1 mA cm⁻² to 5 mA cm⁻².

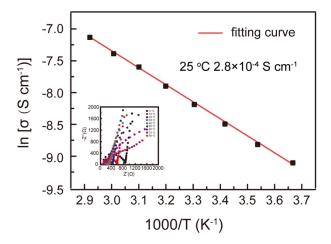

Figure S1. The polymerization mechanism of LCI.

Table S1. The specific values of resistances and the calculation result of ionic conductivity of Figure 2C.

	Thickness	Effective area	$\mathbf{R}_{\mathrm{SSE}}$	Ionic conductivity
	(cm)	(cm^2)	(Ω)	$(mS cm^{-1})$
LPS	0.295	1.13	933	0.28
LPS/LCI	0.310	1.13	671	0.41

Figure S1. Detailed equivalent circuit of Figure 2C, where R_{sse} is the resistance of LPS powder and R_{el} is the resistance of blocking electrode. Each constant phase element (CPE) describes the capacitance of the corresponding process.

Figure S2. Arrhenius curve of ionic conductivity of glassy 75Li₂S-25P₂S₅ electrolyte; Inset: EIS spectra of glassy75Li₂S-25P₂S₅ electrolyte at different temperatures.

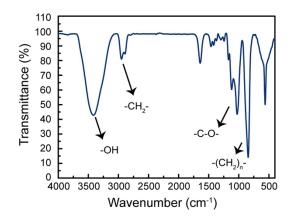
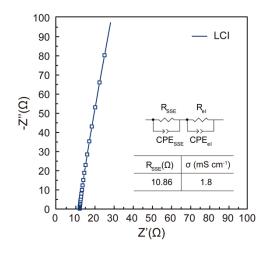
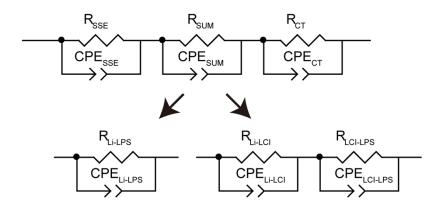
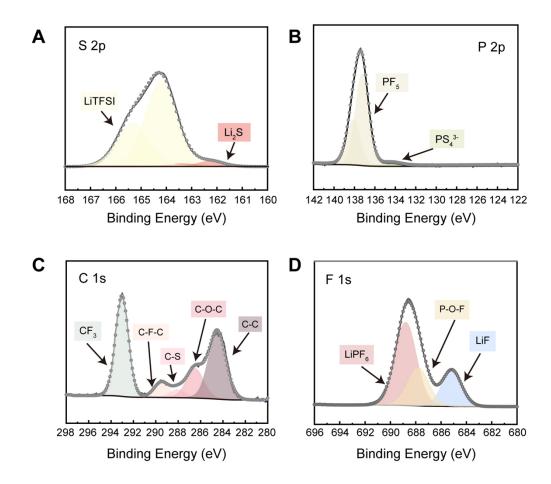
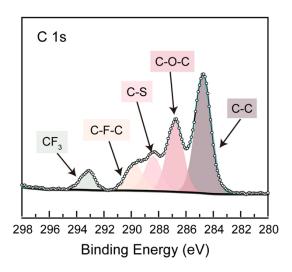


Figure S3. FTIR spectrum of LCI.


Figure S4. EIS spectrum of LCI.


Figure S5. Detailed equivalent circuit of Figure 4c, d, where R_{SSE} is the resistance of LPS, R_{Li} _{LPS}, R_{Li-LCI} , $R_{LCI-LPS}$ is the Li/LPS, Li/LCI, LCI/LPS interphase resistance, respectively. R_{CT} is the electrochemical transfer polarization resistance of Li plating/stripping. Each constant phase element (CPE) describes the capacitance of the corresponding process.

	$R_{sse}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{SUM}}\left(\Omega ight)$	$R_{CT}\left(\Omega ight)$
Li LPS Li	298.9	179.2	140.5
Before cycle	298.9	178.2	149.5
Li LPS Li			
After 30 cycles	-	-	-
Li LCI-LPS-LCI Li	202.2	02.4	208.2
Before cycle	303.3	92.4	208.2
Li LCI-LPS-LCI Li	201 4	1015	169.2
After 30 cycles	301.4	184.5	168.3

Table S2. The specific values of resistances in Figure S6.

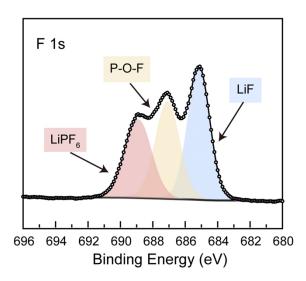


Figure S6. XPS spectrum of the Li anode recovered from Li|LCI-LPS-LCI|Li battery before cycing.

Figure S7. C 1s XPS spectrum of the cycled Li anode recovered from Li|LCI-LPS-LCI|Li battery. The battery is tested for 30 cycles at a current density of 0.1 mA cm⁻² for 0.1 mAh cm⁻²

at room temperature.

Figure S8. F 1s XPS spectrum of the cycled Li anode recovered from Li|LCI-LPS-LCI|Li battery. The battery is tested for 30 cycles at a current density of 0.1 mA cm⁻² for 0.1 mAh cm⁻² at room temperature.

Spectra details	Binding energy (eV)		Attributed species
	131.70	132.57	$P_2S_7^{4-}$
Р 2р	134.19	135.06	PS ₄ ³⁻
	137.05	137.92	PF ₅
	125.82	126.69	Li ₃ P
S 2	163.02	164.18	LiTFSI
S 2p	161.56	162.72	PS ₄ ³⁻
	159.85	161.01	Li ₂ S

Table S3. XPS binding energies with attributed species shown in Figure 5, S8.

Table S4. XPS binding energies with attributed species shown in Figure S6, S7, S8.

<u>0</u> 0	1	0,,,
Spectra details	Binding energy (eV)	Attributed species
	284.77	C-C
	286.79	C-O-C
C 1s	288.40	S-C
	289.78	C-F-C
	293.19	CF ₃
	685.13	LiF
F 1s	687.10	P-O-F
	688.95	LiPF ₆