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1. Materials and methods

1.1 Chemicals and measurement

All the chemicals and reagents were purchased from commercial sources and used as received without 
further purification. The end-products were collected via silica-gel column chromatography and then 
further purified via vacuum sublimation to be employed for PL and EL properties investigations. 1H 
and 13C NMR spectra were measured on a Bruker AV 400/500 spectrometer in CD2Cl2 or CDCl3 at 
room temperature. High-resolution mass spectra (HRMS) were recorded on a GCT premier CAB048 
mass spectrometer operating in MALDI-TOF mode. UV–vis absorption spectra were measured on a 
Shimadzu UV-2600 spectrophotometer. PL spectra were recorded on a Horiba Fluoromax-4 
spectrofluorometer. PL quantum yields were measured using a Hamamatsu absolute PL quantum yield 
spectrometer C11347 Quantaurus QY. Temperature-dependent transient PL decay in films were 
measured in Edinburgh Instruments FLS1000 spectrometer. The prompt fluorescence lifetimes were 
measured by using time-correlated single photon counting (TCSPC) mode with a picosecond light 
source and delayed fluorescence lifetimes were measured by using multichannel scaling (MCS) mode 
with a variable pulse lasers (VPL) light source. Transient PL decay spectra of materials in solutions 
were measured using Quantaurus-Tau fluorescence lifetime measurement system (C11367-03, 
Hamamatsu Photonics Co., Japan). Thermal gravimetric analysis (TGA) data were collected from a 
TG209F1 under nitrogen protection at a heating rate of 20 K min‒1. Differential scanning calorimetric 
(DSC) analysis were performed on a DSC 214 Polymer under dry nitrogen at a heating rate of 10 °C 
min‒1. The ground-state geometries were optimized using the density function theory (DFT) method 
with B3LYP functional at the basis set level of 6-31G, and the ΔEST values between the S1 and the T1 
were calculated by time-dependent DFT (TDDFT) method at the M062X/6-311G (d, p) level. All the 
calculations were performed using Gaussian16 package. Cyclic voltammogram was measured in a 
solution of tetra-n-butylammonium hexafluorophosphate (Bu4NPF6, 0.1 M) in dichloromethane and 
N, N-dimethylformamide (DMF) containing the sample at a scan rate of 100 mV s‒1. Three-electrode 
system (Ag/Ag+, platinum wire and glassy carbon electrode as reference, counter and work electrode 
respectively) was used in the CV method. EHOMO = ‒[Eox + 4.8] eV, and ELUMO = ‒[Ere + 4.8] eV. Eox 
and Ere represent the onsets oxidation (measured in dichloromethane) and reduction (measured in 
DMF) potentials relative to ferrocene. 

1.2 Device fabrication

Glass substrates pre-coated with a 95-nm-thin layer of indium tin oxide (ITO) with a sheet resistance 
of 20 Ω per square were thoroughly cleaned for 10 minutes in ultrasonic bath of acetone, isopropyl 
alcohol, detergent, deionized water, and isopropyl alcohol and then treated with O2 plasma for 5 min 
in sequence in order to improve the hole injection ability. Organic layers were deposited onto the ITO-
coated substrates by high-vacuum (< 5 × 10−4 Pa) thermal evaporation in the Fangsheng OMV-FS380 
vacuum deposition system. Organic materials, Liq and Al were deposited at rates of 1~2 A s−1, 0.1 A 
s−1 and 5 A s−1, respectively. The emission area of the devices is 3 × 3 mm2 as shaped by the 
overlapping area of the anode and cathode. All the device characterization steps were carried out at 
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room temperature under ambient laboratory conditions without encapsulation. The 
luminance‒voltage‒current density and EQE were characterized with a dual-channel Keithley 2614B 
source meter and a PIN-25D silicon photodiode. The EQEs were determined by assuming Lambertian 
pattern. The electroluminescence spectra were obtained via an Ocean Optics USB 2000+ spectrometer, 
along with a Keithley 2614B Source Meter. Simulated angle dependent relative luminance of the 
devices was taken by CS-200 Color and Luminance Meter.

2. Equations for photophysical properties

The quantum efficiencies and rate constants were determined using the following equations according 
to Adachi’s method.1‒3

Φprompt = ΦPLRprompt

Φdelayed = ΦPLRdelayed

kF = Φprompt/τprompt

ΦPL = kF/(kF + kIC)

Φprompt = kF/(kF + kIC + kISC)

ΦIC = kIC/(kF + kIC + kISC)

ΦISC = kISC/(kF + kIC + kISC) = 1 – Φprompt ‒ ΦIC

ΦRISC = Φdelayed/ΦISC  

kRISC = (kpkdΦdelayed)/(kISCΦprompt)

kp = 1/τprompt; kd = 1/τdelayed

3. Additional Figures and Tables
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Fig. S1 NMR spectra of p-APDC-DTPA and o-APDC-DTPA, dissolving in dichloromethane-d2 and 
chloroform.
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Fig. S2 DSC thermograms recorded under nitrogen at a heating rate of 10 °C min‒1.

Fig. S3 (A)PL spectra of p-APDC-DTPA in THF/water mixtures with different water fractions (fw). 
(B) Plots of I/I0 values versus fw of p-APDC-DTPA in THF/water mixtures. (C) Plots of I/I0 values 
versus fw of o-APDC-DTPA in THF/water mixtures. (I0 is the PL intensity in pure THF, and I is the 
PL intensity in the mixtures).

Fig. S4 Fluorescence and phosphorescence spectra of (A) p-APDC-DTPA and (B) o-APDC-DTPA 
doped in TPBi films with a concentration of 10 wt% measured at 77 K.
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Fig. S5 PL spectra of (A) 10 wt% p-APDC-DTPA: TPBi doped film and (B) 10 wt% o-APDC-DTPA: 
TPBi doped film, measured with different delay times at room temperature.

Fig. S6 Transient PL decay spectra of (A) p-APDC-DTPA and (B) o-APDC-DTPA doped in TPBi 
films with a concentration of 10 wt% measured at 300 K.

Fig. S7 The NTO analyses of excited singlet and triplet states of p-APDC-DTPA with the SOC matrix 
elements. Calculated energy levels, ΔEST values, and SOC matrix elements of excited singlet and 
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triplet states of p-APDC-DTPA.

Fig. S8 The NTO analyses of excited singlet and triplet states of o-APDC-DTPA with the SOC matrix 
elements. Calculated energy levels, ΔEST values, and SOC matrix elements of excited singlet and 
triplet states of o-APDC-DTPA.

Table S1. Temperature-dependent photophysical parameters of doped films in TPBi host with a 
concentration of 10 wt%.

Temperature (K) p-APDC-DTPA o-APDC-DTPA
300 69.16 69.50
250 64.16 80.23
200 87.77 49.61
150 54.90 35.97
100 5.20 21.34

τdelayed

(μs)

77 6.25 10.17
300 62 63
250 55 43
200 36 3
150 13 3
100 4 1

Rdelayed

(%)

77 3 1
a) τdelayed = lifetimes calculated from delayed fluorescence decay; Rdelayed = ratio of delayed component.
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Fig. S9. A) Luminance–voltage–current density, B) current efficiency–luminance–power efficiency 
and C) external quantum efficiency–luminance of the non-doped OLEDs. Inset in plane E: EL spectra 
of the non-doped OLEDs.

Fig. S10 A) luminance–voltage–current density, B) current efficiency–luminance–power efficiency 
and C) external quantum efficiency–luminance of the doped OLEDs with the concentration of 5 wt% 
in TPBi. Inset in plane E: EL spectra of the doped OLEDs.

Fig. S11 A) luminance–voltage–current density, B) current efficiency–luminance–power efficiency 
and C) external quantum efficiency–luminance of the doped OLEDs with the concentration of 15 wt% 
in TPBi. Inset in plane E: EL spectra of the doped OLEDs.
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Fig. S12 A) EQE summary based on the dicyanopyrazino phenanthrene core. B) EQE summary of 
representative non-doped red/NIR TADF-OLEDs with emission peaks from 650 to 750 nm.

Table S2. The EL performance based phenanthrene core and non-doped deep-red/NIR emitters with 
emission peaks above 600 nm.

Emitter Year λEL (nm) EQE (%) CIE (x, y) Ref.

3,6APDC-DTPA 2022 636 10.5 (0.62, 0.38) This work

4,5APDC-DTPA 2022 636 19.0 (0.63, 0.37) This work

1DMAC-BP 2019 560 10.1 (0.43, 0.54) 4

2DMAC-BP 2019 576 11.8 (0.43, 0.54) 4

3DMAC-BP 2019 606 22.0 (0.43, 0.54) 4

Ac-CNP 2016 580 13.3 (0.47, 0.51) 5

Px-CNP 2016 606 3.0 (0.53, 0.44) 5

PyCN-ACR 2016 572 15.6 (0.46, 0.52) 6

DMAC-Ph-DCPP 2017 596 16.9 (0.53, 0.46) 7

DPA-DCPP 2017 616 10.4 (0.61, 0.38) 7

DMAC-DCPP 2017 624 10.1 (0.60, 0.40) 7

DPA-Ph-DCPP 2017 644 15.1 (0.64, 0.36) 7

Cz-DCPP 2017 560 14.8 (0.44, 0.54) 7

Cz-Ph-DCPP 2017 564 11.6 (0.46, 0.52) 7

Ac-CNBQx 2018 585 14.0 (0.51, 0.48) 8

Ac-CNBPz 2018 630 16.2 (0.61, 0.39) 8

Da-CNBQx 2018 617 20.0 (0.59, 0.41) 8

PXZ-DCPP 2018 608 17.4 (0.56, 0.43) 9

DPXZ-BPPZ 2018 612 20.1 (0.60, 0.40) 10

TPA-QCN 2017 644 14.5 (0.62, 0.38) 11

DDTPACz-DCPP 2019 646 13.6 (0.61, 0.38) 12

TPA-DCPP 2015 648 9.6 (0.64, 0.35) 13

TPA-PPDCN 2019 648 18.8 (0.65, 0.35) 14

tDBBPZ-DPXZ 2019 608 17.0 (0.57, 0.43) 15

DBPZ-PDXZ 2019 608 17.8 (0.58, 0.42) 15

mDPBPZ-PXZ 2019 624 21.7 (0.62, 0.38) 16

TAT-DBPZ 2020 604 15.4 - 17

TAT-FDBPZ 2020 611 9.2 - 17
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TCQ 2022 574 16.9 (0.48, 0.50) 18

TCPQ 2022 612 21.9 (0.58, 0.41) 18

TPQ 2022 622 21.8 (0.62, 0.39) 18

ANQDC-MeFAC 2020 614 26.3 (0.60, 0.40) 19

ANQDC-DMAC 2020 615 27.5 (0.58, 0.41) 19

T-DA-2 2020 640 26.3 (0.62, 0.37) 20

TPA-PZCN 2019 648 28.1 (0.66, 0.34) 21

DCPPr-α-NDPA 2021 606 31.5 (0.58, 0.42) 22

4,5APDC-DTPA 2022 712 6.6 (0.69, 0.29) This work

mDPBPZ-PXZ 2019 680 5.2 (0.68, 0.32) 16

BPPZ-PXZ 2019 656 2.5 (0.65, 0.35) 16

TPATCN 2015 675 2.6 (0.67, 0.32) 23

TPA-QCN 2017 728 3.9 (0.69, 0.31) 11

pCNQ-TPA 2021 700 4.6 - 24

TPA-DCPP 2015 708 2.1 (0.70, 0.29) 13

NZ2TPA 2017 696 3.3 (0.70, 0.30) 25

TAPPQ 2019 711 3.5 - 26

TPA-PZCN 2019 680 5.3 (0.69, 0.30) 21

TCPQ 2022 718 5.4 (0.70, 0.30) 18

TPQ 2022 716 4.9 (0.69, 0.30) 18

Table S3. EL performances of the OLEDs based on p-APDC-DTPA and o-APDC-DTPA fabricated 
with device structure of ITO/HATCN (5 nm)/NPB (30 nm)/mCP (5 nm)/EML (20 nm)/TPBi (50 
nm)/LiF (1 nm)/Al. 

Emitter concentration Von
a) (V) Lmax (cd m–2) CE (cd A–1) PE (lm W–1) EQE (%) λEL (nm) CIE (x, y)

5% 3.2 2593 4.3 3.7 4.2 634 (0.615, 0.376)

10% 2.8 2645 3.3 3.4 5.3 658 (0.651, 0.343)p-APDC-DTPA

15% 2.8 2598 2.3 2.5 5.1 668 (0.668, 0.327)

5% 3.0 5912 11.8 11.3 6.4 610 (0.561, 0.430)

10% 2.8 5252 13.7 14.6 11.0 628 (0.610, 0.386)o-APDC-DTPA

15% 2.8 5319 11.3 12.7 11.2 640 (0.628, 0.369)

a) Abbreviations: Von = turn-on voltage at 1 cd m–2; Lmax = maximum luminance; CE = maximum current efficiency; PE = maximum 

power efficiency; EQE = maximum external quantum efficiency; λEL = electroluminescence peak; CIE = Commission Internationale de 

I’Eclairage coordinates.
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