Halogen-induced planar defects in Cu catalyst for ammonia electrosynthesis at an ampere-level current density

Yan Wang,^{a,#} Shuai Xia,^{a,#} Jianfang Zhang,^{a,*} Ashok Kumar Ummireddi,^b Zhengyuan Li,^b Xu Yuan,^a Cuiping Yu,^a Yong Zhang^{a,c}, Jingjie Wu,^{b,*} and Yucheng Wu^{a,c,d,*}

^aSchool of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China

^bDepartment of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States

^cChina International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China

^dKey Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China

[#]These authors contributed equally.

*Correspondence: jfzhang@hfut.edu.cn; wu2jj@ucmail.uc.edu; ycwu@hfut.edu.cn

Figure S1. (a) TEM, (b, c) HRTEM and (d) EDX elemental mapping images of Cu-Cl catalyst.

Figure S2. (a) TEM, (b, c) HRTEM and (d) EDX elemental mapping images of Cu-Br catalyst.

Figure S3. (a) TEM, (b, c) HRTEM and (d) EDX elemental mapping images of Cu-I catalyst.

Figure S4. (a) UV-Vis spectra and (b) corresponding standard curve of various concentrations of NH_3 .

Figure S5. UV-Vis spectra of Cu-X electrodes under different potentials. (a) Cu, (b) Cu-F, (c) Cu-Cl, (d) Cu-Br, and (e) Cu-I.

Figure S6. The partial current density of NH_3 generated on different electrodes.

Figure S7. XPS spectra of F 1s in the Cu-F electrode prepared by different concentrations of KF. (a) 0.1 M, (b) 0.3 M, (c) 0.5 M, and (d) 1.0 M.

Figure S8. HRTEM images of different Cu-F electrodes prepared by (a) 0.1 M KF, (b) 0.3 M KF, and (c) 1.0 M KF.

Figure S9. UV-Vis spectra of NH_3 generated on Cu-F electrode in different concentrations of KF. (a) 0.1 M, (b) 0.3 M, and (c) 1.0 M.

Figure S10. (a) The yield rates and (b) FEs of NH_3 generated on Cu-F electrode in different concentrations of KF.

Figure S11. UV-Vis spectra of NH_3 generated on Cu-F electrode in different concentrations of KNO₃. (a) 0.05 M, (b) 0.1 M, and (c) 0.5 M.

Figure S12. (a) The yield rate and (b) FE of NH_3 generated on Cu-F electrode in different concentrations of KNO_3 .

Figure S13. Comparison of NO_3 -RR performance of Cu-F electrode between KNO_3 and $NaNO_3$ electrolyte. (a) The yield rate and (b) FE of NH_3 .

Figure S14. (a) UV-Vis spectra and (b) corresponding standard curve of various concentrations of NO_3^{-1} .

Figure S15. UV-Vis spectra of NO_3^- in the electrolyte at different reaction duration.

Figure S16. (a) UV-Vis spectra and (b) corresponding standard curve of various concentrations of NO_2^{-} .

Figure S17. UV-Vis spectra of NO_2^- in the electrolyte at different reaction duration.

Figure S18. (a) UV-Vis spectra and (b) corresponding standard curve of various concentrations of N_2H_4 .

Figure S19. UV-Vis spectra of N₂H₄ produced on Cu-F at different potentials.

Figure S20. ¹H NMR spectra of ${}^{15}NH_4^+$ with different standard concentrations.

Figure S21. XPS spectra of F 1s in the Cu-F electrode at different reaction times.

samples	K	λ	β (FWHM)	20	D
Pure Cu	0.89	0.15405	0.247	43.25	43.7
Cu-F	0.89	0.15405	0.291	43.38	29.1
Cu-Cl	0.89	0.15405	0.319	43.30	26.5
Cu-Br	0.89	0.15405	0.401	43.40	21.1
Cu-I	0.89	0.15405	0.383	43.27	22.1

Table S1. The calculated grain sizes of different Cu-X and Cu catalysts.