Supporting Information for

Gold(I) N-heterocyclic carbene complexes with tunable electronic

properties for sensitive colorimetric detection of glutathione

Yi-Fan Zhang,^{ab} Xin Li,^b Heng Zhang,^b Xi-Qiang Wang,^a Li-Ying Sun,^b Xiang-Long Duan^{*ac} and Ying-Feng Han^{*b}

^a Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China.

^b Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127 Shaanxi, China.

^c Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 Shaanxi, China, Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068 Shaanxi, China.

E-mail: yfhan@nwu.edu.cn, duanxianglong@nwpu.edu.cn

Table of Contents:

1. NMR spectrum of complex 1–4	S1
2. X-ray crystallography for 1–4	S7
3. Time-dependent absorbance changes at 652 nm of TMB	S12
4. The catalytic activity of complexes depends on pH and temperature	S13
5. The stability studies of complexes under different pH	S14
6. EPR spectra of different reaction samples	S14
7. Intracellular ROS detection and Cytotoxicity	S16
8. Cyclic voltammograms of complexes 1–4	S18
9. Colorimetric detection of H ₂ O ₂	S18
10. Comparison of Au(I)-NHC complex ${\bf 1}$ and other colorimetric methods	for GSH
detection	S18
11. Cartesian coordinates of the optimized geometries	S19
12. References	S24

Fig. S1. ¹H NMR spectrum of complex **1** (400 MHz, CDCl₃).

Fig. S2. ¹H NMR spectrum of 1,3-dibutyl-benzoimidazolium bromide (400 MHz, DMSO- d_6).

Fig. S3. ¹H NMR spectrum of complex 2 (400 MHz, CDCl₃).

Fig. S4. ¹³C NMR spectrum of complex 2 (150 MHz, CDCl₃).

Fig. S5. ¹H NMR spectrum of 1,3-dibutyl-5,6-dimethyl-benzoimidazolium bromide (400 MHz, DMSO- d_6).

Fig. S6. ¹³C NMR spectrum of 1,3-dibutyl-5,6-dimethyl-benzoimidazolium bromide (150 MHz, DMSO- d_6).

Fig. S7. ¹H NMR spectrum of complex 3 (400 MHz, $CDCl_3$).

Fig. S8. ¹³C NMR spectrum of complex 3 (150 MHz, CDCl₃).

Fig. S9. ¹H NMR spectrum of *N*-(9-anthracenyl)-*N*'-(butyl)-benzimidazolium bromide (400 MHz, DMSO- d_6).

Fig. S10. ¹H NMR spectrum of complex 4 (400 MHz, CDCl₃).

Empirical formula	$C_{15}H_{20}AuBrN_4O_4$
Formula weight	597.23
Temperature/K	228.0
Crystal system	monoclinic
Space group	P21/n
a/Å	14.3250(7)
b/Å	8.8390(4)
c/Å	14.6957(8)
α/°	90
6/°	93.103(2)
γ/°	90
Volume/ų	1858.02(16)
Ζ	4
$ ho_{calc}$ (g/cm ³)	2.135
μ (mm ⁻¹)	10.095
F (000)	1136.0
Crystal size/mm ³	0.3 × 0.28 × 0.27
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.38 to 52.784
Index ranges	-17 ≤ h ≤ 16, -11 ≤ k ≤ 11, -18 ≤ l ≤ 18
Reflections collected	12793
Independent reflections	3804 [<i>R</i> _{int} = 0.0293, <i>R</i> _{sigma} = 0.0323]
Data/restraints/parameters	3804/0/228
Goodness-of-fit on <i>F</i> ²	1.132
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0273, wR_2 = 0.0573$
Final R indexes [all data]	$R_1 = 0.0334, wR_2 = 0.0591$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.64
CCDC	2239763

Table S1. Crystallographic data and the structure refinement details for 1.

Empirical formula	$C_{15}H_{22}AuBrN_2$
Formula weight	507.22
Temperature/K	200.00
Crystal system	orthorhombic
Space group	Pbcn
a/Å	21.5840(7)
b/Å	8.8563(2)
c/Å	17.1841(6)
α/°	90
6/°	90
γ/°	90
Volume/ų	3284.82(17)
Ζ	8
$ ho_{calc}$ (g/cm ³)	2.051
μ (mm ⁻¹)	11.380
F (000)	1920.0
Crystal size/mm ³	0.32 × 0.3 × 0.29
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.102 to 52.826
Index ranges	-26 ≤ h ≤ 22, -11 ≤ k ≤ 9, -13 ≤ l ≤ 21
Reflections collected	10435
Independent reflections	3343 [<i>R</i> _{int} = 0.0219, <i>R</i> _{sigma} = 0.0237]
Data/restraints/parameters	3343/0/174
Goodness-of-fit on F ²	1.035
Final R indexes [I ≥ 2σ (I)]	$R_1 = 0.0180, wR_2 = 0.0380$
Final R indexes [all data]	$R_1 = 0.0229, wR_2 = 0.0393$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.67

Table S2. Crystallographic data and the structure refinement details for 2.

Empirical formula	C ₁₇ H ₂₆ AuBrN ₂
Formula weight	535.27
Temperature/K	222.00
Crystal system	tetragonal
Space group	P4 ₂ /n
a/Å	12.1551(9)
b/Å	12.1551(9)
c/Å	28.806(3)
α/°	90
6/°	90
γ/°	90
Volume/ų	4255.9(7)
Ζ	8
$ ho_{calc}(g/cm^3)$	1.671
μ (mm ⁻¹)	8.788
F (000)	2048.0
Crystal size/mm ³	$0.23 \times 0.21 \times 0.18$
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	3.636 to 52.094
Index ranges	-14 ≤ h ≤ 14, -15 ≤ k ≤ 12, -35 ≤ l ≤ 35
Reflections collected	41503
Independent reflections	4138 [R _{int} = 0.0889, R _{sigma} = 0.0508]
Data/restraints/parameters	4138/269/203
Goodness-of-fit on F ²	1.100
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.1478, wR_2 = 0.3342$
Final R indexes [all data]	$R_1 = 0.1805, wR_2 = 0.3510$
Largest diff. peak/hole / e Å ⁻³	3.14/-2.13
CCDC	2239764

Table S3. Crystallographic data and the structure refinement details for **3**.

Empirical formula	$C_{26}H_{24}AuBrCl_2N_2$
Formula weight	712.25
Temperature/K	200.00
Crystal system	triclinic
Space group	ΡĪ
a/Å	10.3079(5)
b/Å	11.3455(6)
c/Å	12.2406(7)
α/°	111.256(2)
в/°	104.585(2)
γ/°	90.394(2)
Volume/ų	1283.47(12)
Ζ	2
$ ho_{calc}(g/cm^3)$	1.843
μ (mm ⁻¹)	7.512
F (000)	684.0
Crystal size/mm ³	0.3 × 0.28 × 0.26
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.726 to 51.272
Index ranges	$-11 \le h \le 12, -13 \le k \le 13, -14 \le l \le 14$
Reflections collected	19305
Independent reflections	4821 [R _{int} = 0.0412, R _{sigma} = 0.0400]
Data/restraints/parameters	4821/13/290
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0309$, $wR_2 = 0.0689$
Final R indexes [all data]	$R_1 = 0.0378$, $wR_2 = 0.0723$
Largest diff. peak/hole / e Å ⁻³	1.18/-1.19
CCDC	2239765

Table S4. Crystallographic data and the structure refinement details for 4.

Со	mplex	1	2	3	4
distance	C _{NHC} -Au(1)	1.980(5)	1.988(3)	1.962(13)	1.983(5)
(Å)	Au(1)-Br(1)	2.476(6)	2.397(3)	2.357(5)	2.392(6)
Angle °	C _{NHC} -Au-Br	178.14(13)	179.27(9)	179.10(6)	178.25(14)

Table S5. Important bond distances and angles of Au(I)-NHC complexes 1–4.

Fig. S11. The Au–Au interactions (3.134 Å) observed between the neighbouring complex **2**.

Fig. S12. The π - π stacking interactions (3.596 Å) observed between phenyl rings and imidazoline-2-ylidenes of neighboring structure of complex **3**.

Fig. S13. Time-dependent absorbance changes at 652 nm of TMB catalysed by complexes **1–4**.

Fig. S14. The catalytic activity of Au-NHC complexes depends on pH, complex **1** (a), **2** (b), **3** (c), and **4** (d).

Fig. S15. The catalytic activity of Au-NHC complexes depends on temperature, complex **1** (a), **2** (b), **3** (c), and **4** (d).

Fig. S16. UV-vis spectra of complexes 1–4 under different pH buffers.

Fig. S17. EPR spectra of different reaction samples with DMPO (100 mM) as the spin trap. $[H_2O_2] = 0.5 \text{ M}.$

Fig. S18. Michaelis-Menten curve of Au(I)-NHC complexes 1–4 under different concentrations of H_2O_2 , respectively. complex **1** (a), **2** (b), **3** (c), and **4** (d).

Fig. S19. Michaelis-Menten curve of HRP under different concentrations of H_2O_2 and TMB, respectively.

Fig. S20. Intracellular ROS detection of Hep G2 cells after Au(I)-NHC complexes treatment for 4 h by (a) CLSM images and (b) flow cytometry. (c) Quantization of ROS level of Hep G2 cells treated with Au(I)-NHC complexes.

Fig. S21. Cytotoxicity of complexes 1–4 against L929 and Hep G2 cells.

Fig. S22. Live/dead cell staining using acridine orange (AO, green emission for living cells) and ethidium bromide (EB, red emission for dead cells) assays after different treatments.

IC ₅₀ μΜ	1	2	3	4
Hep G2	9.95 ± 0.56	14.61 ± 0.32	10.39 ± 0.47	5.95 ± 0.25
L929	16.21 ± 0.42	11.34 ± 0.16	7.45 ± 0.94	8.93 ± 0.54
Selectivity index ^a	1.63	0.78	0.72	1.50

Table S6 IC $_{50}$ values of 1–4 against Hep G2 and L929 cells after 24 h co-incubation.

^{a.}Selectivity index was determined by dividing the IC_{50} value against L929 normal cells by the IC_{50} against cancer cells.

Fig. S23. Cyclic voltammograms of complexes 1–4. (nBu_4NPF_6 in water, 200 mV s⁻¹ vs Ag/AgCl, c = 10⁻⁵ M).

Fig. S24. (a) UV-vis absorption curves and (b) absorbance at 652 nm of [TMB + 1] with various concentrations of H_2O_2 . (c) linear calibration chart of H_2O_2 detection.

Materials	Linear range (µM)	Detection limit(µM)	Reference
MoS ₂ nanoflakes	4.1-300	4.10	1
CuZnFeS nanocrystals	10-55	3	2
FeS ₂ nanoparticles	2-80	0.91	3
Mn ₃ O ₄ microspheres	5-60	0.889	4
SPB-MnO ₂	0.5-12.5	0.45	5
Au nanoparticles	1-40	0.013	6
Py-TT COF	0.4–60	0.225	7
Co-POP	5-90	0.71	8
PSMOF	0-20	0.68	9

Table S7 Comparison of Au(I)-NHC complex **1** and other colorimetric methods for GSH detection.

Atom	X	Y	Z
C	1.793522	0.658265	0.247776
С	1.79348	-0.65822	-0.24769
С	2.982873	-1.3338	-0.51303
С	4.16845	-0.65431	-0.26157
С	4.168477	0.654315	0.261519
С	2.982932	1.333834	0.513055
С	-0.35063	7.99E-05	0.000102
Н	3.020058	-2.33928	-0.91344
Н	3.020159	2.33931	0.913459
С	-0.00728	-2.34244	-0.83943
С	-0.11083	-3.35296	0.30823
Н	0.683695	-2.68998	-1.6149
Н	-0.98134	-2.18652	-1.30907
С	-0.60429	-4.72218	-0.17949
Н	0.867944	-3.46086	0.795675
Н	-0.80102	-2.95499	1.062949
С	-0.73407	-5.73955	0.958911
Н	-1.57708	-4.59947	-0.6745
Н	0.085326	-5.10972	-0.94275
Н	-1.08879	-6.70529	0.583771
Н	0.229611	-5.90702	1.454923
н	-1.44578	-5.3939	1.717661
С	-0.00724	2.342542	0.839568
С	-0.11106	3.352952	-0.30816
Н	0.68386	2.690207	1.614879
Н	-0.98119	2.186588	1.309401
С	-0.60433	4.72225	0.179547
н	0.867583	3.460747	-0.79589
Н	-0.80149	2.954931	-1.06264
С	-0.73431	5.73953	-0.95891
Н	-1.57701	4.599639	0.674798
Н	0.085486	5.109811	0.942616

Table S8 Cartesians coordinates of calculated (1) at the B3LYP/6-31G*/LANL2DZ.

H-1.088956.705308-0.58377H0.2292815.906955-1.45511H-1.446165.39383-1.7175N0.4634721.020720.395366N0.463416-1.02062-0.3952Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013				
H0.2292815.906955-1.45511H-1.446165.39383-1.7175N0.4634721.020720.395366N0.463416-1.02062-0.3952Au-2.368812.81E-054.38E-05Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	н	-1.08895	6.705308	-0.58377
H-1.446165.39383-1.7175N0.4634721.020720.395366N0.463416-1.02062-0.3952Au-2.368812.81E-054.38E-05Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	Н	0.229281	5.906955	-1.45511
N0.4634721.020720.395366N0.463416-1.02062-0.3952Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	н	-1.44616	5.39383	-1.7175
N0.463416-1.02062-0.3952Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	Ν	0.463472	1.02072	0.395366
Au-2.368812.81E-054.38E-05N5.408938-1.32401-0.69662N5.4090151.3239940.696505O6.2638660.6222811.222194O5.4571472.5427160.553759O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	Ν	0.463416	-1.02062	-0.3952
N 5.408938 -1.32401 -0.69662 N 5.409015 1.323994 0.696505 O 6.263866 0.622281 1.222194 O 5.457147 2.542716 0.553759 O 5.457107 -2.54272 -0.55384 O 6.263749 -0.62231 -1.22243 Br -4.81004 -0.00013 -0.00013	Au	-2.36881	2.81E-05	4.38E-05
N 5.409015 1.323994 0.696505 O 6.263866 0.622281 1.222194 O 5.457147 2.542716 0.553759 O 5.457107 -2.54272 -0.55384 O 6.263749 -0.62231 -1.22243 Br -4.81004 -0.00013 -0.00013	Ν	5.408938	-1.32401	-0.69662
O 6.263866 0.622281 1.222194 O 5.457147 2.542716 0.553759 O 5.457107 -2.54272 -0.55384 O 6.263749 -0.62231 -1.22243 Br -4.81004 -0.00013 -0.00013	Ν	5.409015	1.323994	0.696505
O 5.457147 2.542716 0.553759 O 5.457107 -2.54272 -0.55384 O 6.263749 -0.62231 -1.22243 Br -4.81004 -0.00013 -0.00013	0	6.263866	0.622281	1.222194
O5.457107-2.54272-0.55384O6.263749-0.62231-1.22243Br-4.81004-0.00013-0.00013	0	5.457147	2.542716	0.553759
O 6.263749 -0.62231 -1.22243 Br -4.81004 -0.00013 -0.00013	0	5.457107	-2.54272	-0.55384
Br -4.81004 -0.00013 -0.00013	0	6.263749	-0.62231	-1.22243
	Br	-4.81004	-0.00013	-0.00013

Table S9 Cartesians coordinates of calculated (2) at the B3LYP/6-31G*/LANL2DZ.

Atom	Х	Y	Z
С	-2.85497756	0.64712895	-0.27321029
С	-2.85520961	-0.64651647	0.27333534
С	-4.04642943	-1.31828878	0.55353528
С	-5.23552745	-0.647643	0.27235783
С	-5.2352884	0.6490189	-0.27256692
С	-4.04593825	1.31928891	-0.55356767
С	-0.70428773	-0.00005269	0.00014257
н	-4.05198274	-2.32005591	0.97026347
н	-4.05109779	2.32106294	-0.97028559
С	-1.04760716	-2.30191271	0.92641567
С	-0.94935236	-3.35827661	-0.18003291
н	-1.7365382	-2.62013143	1.71657506
н	-0.07048149	-2.13510891	1.38641054
С	-0.46233163	-4.71093483	0.35669231
н	-1.92888791	-3.47775599	-0.66315018
Н	-0.25790443	-2.99182329	-0.94942633
С	-0.33558109	-5.77104769	-0.74239673

Н	0.51075276	-4.57500355	0.84792264
Н	-1.15335435	-5.06761547	1.13405358
Н	0.01378625	-6.72495726	-0.33260036
Н	-1.29924732	-5.95115153	-1.2344722
Н	0.37862427	-5.45652378	-1.51230571
С	-1.04678857	2.30190227	-0.92625018
С	-0.94863675	3.35851064	0.17997048
Н	-1.73542693	2.62010275	-1.71667554
Н	-0.06956684	2.13477705	-1.38591406
С	-0.46103976	4.71088692	-0.35696521
Н	-1.92833629	3.47844191	0.66264221
Н	-0.2576142	2.99217138	0.94982109
С	-0.33459833	5.77132858	0.74184393
Н	0.51225174	4.57457541	-0.84767683
Н	-1.1516151	5.06745682	-1.13477019
Н	0.01530118	6.72499319	0.33193173
Н	-1.2984907	5.95190867	1.23330425
Н	0.3790624	5.45683478	1.51227157
Ν	-1.51599732	1.00210103	-0.43341769
Ν	-1.51635899	-1.00191591	0.43368488
Au	1.31877146	-0.00024172	0.00008326
н	-6.18220957	-1.13801096	0.47772324
Н	-6.1817884	1.13967955	-0.47807203
Br	3.7705679	-0.00018344	-0.00005255

 Table S10 Cartesians coordinates of calculated (3) at the B3LYP/6-31G*/LANL2DZ.

Atom	Х	Y	Z
С	-2.43112606	0.64779324	-0.26491617
С	-2.43133006	-0.64709956	0.26482654
С	-3.62709191	-1.31338002	0.53399746
С	-4.83188567	-0.65892457	0.26844444
С	-4.83167934	0.66034524	-0.26860731
С	-3.62667919	1.31443803	-0.53412174

С	-0.28020537	0.00005932	0.00009798
Н	-3.63175328	-2.32067883	0.93924994
н	-3.63101528	2.32173181	-0.93938887
С	-0.62522597	-2.31166039	0.90038125
С	-0.53247138	-3.35797271	-0.21619206
н	-1.31266607	-2.63663289	1.68922271
н	0.35374431	-2.15182936	1.35909479
С	-0.04731286	-4.71682105	0.30620724
н	-1.51374462	-3.47033457	-0.69749714
н	0.15759384	-2.98603311	-0.98420703
С	0.0743285	-5.76697154	-0.80299368
н	0.92732105	-4.58784591	0.79625155
н	-0.73714481	-5.07928597	1.08199442
н	0.42269151	-6.72555766	-0.40326351
н	-0.89098662	-5.94032414	-1.29437305
н	0.78716212	-5.44671617	-1.57184109
С	-0.62446501	2.3118854	-0.90022587
С	-0.53076441	3.35794311	0.21649463
н	-1.31211039	2.6373366	-1.6886844
н	0.35421168	2.15167266	-1.35943758
С	-0.04534988	4.71670535	-0.3059
н	-1.51177903	3.47059416	0.69825914
н	0.15952779	2.98565031	0.98414075
С	0.07710731	5.76662747	0.80342895
н	0.92904118	4.58746721	-0.79636191
н	-0.73537241	5.07953018	-1.08134801
н	0.42569537	6.72514289	0.40372696
н	-0.88795732	5.9402808	1.295194
н	0.79009789	5.44595304	1.57195386
Ν	-1.09225606	1.0069434	-0.42206233
Ν	-1.09257133	-1.00660768	0.42212728
Au	1.74330113	-0.0002278	0.00000772
С	-6.13780758	-1.36318873	0.5553555
Н	-6.74540022	-0.81092565	1.28360622

Н	-6.74963491	-1.47039378	-0.34950361
Н	-5.9644126	-2.36480749	0.95962993
С	-6.13737964	1.36498694	-0.55559932
н	-6.74508441	0.81290008	-1.28389385
н	-6.74923347	1.47235671	0.34921868
н	-5.96367144	2.36655677	-0.9598583
Br	4.19668325	-0.00053585	-0.00020045

 Table S11 Cartesians coordinates of calculated (4) at the B3LYP/6-31G*/LANL2DZ.

Atom	Х	Y	Z
С	-0.4294543	2.69303509	-0.31260415
С	0.92588119	2.90659033	-0.60425838
С	1.42954046	4.19322394	-0.8057216
С	0.52620431	5.25048357	-0.70710662
С	-0.83306254	5.03188698	-0.41686422
С	-1.33591795	3.7477734	-0.21487236
С	0.60992164	0.67419768	-0.3687375
Н	2.47725768	4.36838429	-1.02670802
н	-2.38232517	3.57037895	0.00882603
С	2.95237159	1.40050177	-0.86506476
С	3.78222937	1.48093165	0.42108371
н	3.29546256	2.13311516	-1.60389955
Н	3.03768788	0.40835529	-1.31502784
С	5.27324561	1.22842504	0.16088434
Н	3.64541498	2.46650832	0.88728279
Н	3.39634117	0.7362856	1.1289582
С	6.11363408	1.28219665	1.44097818
н	5.39464158	0.2462151	-0.31557069
н	5.65087439	1.96950671	-0.55835846
н	7.17233725	1.10059506	1.22625598
Н	6.03428718	2.26186511	1.92817777
Н	5.78399274	0.52376306	2.16065775
Ν	-0.58352059	1.30937108	-0.17300801

Ν	1.52338727	1.64491032	-0.63743511
Au	0.94413738	-1.31109824	-0.25291848
Н	0.88110451	6.26567755	-0.85688576
н	-1.50515996	5.88186963	-0.34828156
С	-1.82697124	0.65471475	0.13726669
С	-2.6580831	0.24343805	-0.92185808
С	-2.17301462	0.47163532	1.48949618
С	-3.91567933	-0.38873327	-0.59726016
С	-2.31843174	0.41638301	-2.29989254
С	-3.43545922	-0.1614807	1.79235017
С	-1.33679234	0.87673266	2.57626773
С	-4.76989755	-0.81233518	-1.66250221
С	-4.26706011	-0.57103522	0.74453256
С	-3.1680666	-0.00633936	-3.28899831
Н	-1.37120583	0.87734933	-2.55726796
С	-3.80020815	-0.35376017	3.16123442
С	-1.72647878	0.67153357	3.87431973
Н	-0.37996415	1.34054585	2.36320306
С	-4.41019813	-0.62723751	-2.97051977
Н	-5.71250047	-1.29027196	-1.40808862
Н	-5.21521405	-1.04924702	0.98044885
Н	-2.89038023	0.12728486	-4.33071618
Н	-4.75073613	-0.83434843	3.37845549
С	-2.97313771	0.05076321	4.17462063
Н	-1.07519854	0.98023999	4.68716962
н	-5.06545362	-0.95686845	-3.77158045
н	-3.25902777	-0.10392015	5.21098177
Br	1.37889014	-3.72136127	-0.10957179

References

_

 J. Yu, D. Ma, L. Mei, Q. Gao, W. Yin, X. Zhang, L. Yan, Z. Gu, X. Ma, Y. Zhao, Peroxidase-Like Activity of MoS₂ Nanoflakes with Different Modifications and Their Application for H₂O₂ and Glucose Detection, *J. Mater. Chem. B*, 2018, 6, 487–498.

- A. Dalui, B. Pradhan, U. Thupakula, A. H. Khan, G. S. Kumar, T. Ghosh, B. Satpati, S. Acharya, Insight into the Mechanism Revealing the Peroxidase Mimetic Catalytic Activity of Quaternary CuZnFeS Nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose, *Nanoscale*, 2015, 7, 9062–9074.
- 3. C. Song, W. Ding, W. Zhao, H. Liu, J. Wang, Y. Yao, C. Yao, High Peroxidase-like Activity Realized by Facile Synthesis of FeS₂ Nanoparticles for Sensitive Colorimetric Detection of H₂O₂ and Glutathione, *Biosens. Bioelectron.*, 2020, **151**, 111983–8.
- 4. J. Xi, C. Zhu, Y. Wang, Q. Zhang, L. Fan, Mn₃O₄ microspheres as an oxidase mimic for rapid detection of glutathione, *RSC Adv.*, 2019, **9**, 16509–16514.
- 5. Q. Yang, L. Li, F. Zhao, Y. Wang, Z. Ye, X. Guo, Generation of MnO₂ nanozyme in spherical polyelectrolyte brush for colorimetric detection of glutathione, *Mater. Lett.*, 2019, **248**, 89–92.
- V. Kumar, D. Bano, D. K. Singh, S. Mohan, V. K. Singh, S. H. Hasan, Size-Dependent Synthesis of Gold Nanoparticles and Their Peroxidase-Like Activity for the Colorimetric Detection of Glutathione from Human Blood Serum, ACS Sustainable Chem. Eng., 2018, 6, 7662–7675.
- G. Li, W. Ma, Y. Yang, C. Zhong, H. Huang, D. Ouyang, Y. He, W. Tian, J. Lin, Z. Lin, Nanoscale Covalent Organic Frameworks with Donor–Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione, ACS Appl. Mater. Interfaces, 2021, 13, 49482–49489.
- D. Guo, C. Li, G. Liu, X. Luo, F. Wu, Oxidase Mimetic Activity of a Metalloporphyrin-Containing Porous Organic Polymer and Its Applications for Colorimetric Detection of Both Ascorbic Acid and Glutathione, ACS Sustainable Chem. Eng., 2021, 9, 5412–5421.
- 9. Y. Liu, M. Zhou, W. Cao, X. Wang, Q. Wang, S. Li, H. Wei, Light-Responsive Metal– Organic Framework as an Oxidase Mimic for Cellular Glutathione Detection, *Anal. Chem.*, 2019, **91**, 8170–8175.