Supporting Information

Amorphous niobium polysulfide based nanocomposite enables ultrastable all-solid-state lithium batteries

Wenrui Xie ${ }^{a, b}$, Mingyuan Chang ${ }^{b}$, Wentong Fan ${ }^{b}$, Mengli Yang ${ }^{b}$, Fuli Tian ${ }^{b}$, Xiaolin Xue ${ }^{a, b}$, Xiaolei Zhao ${ }^{b, c}, \mathrm{Hao} \mathrm{He}^{a *}$, Xiayin Yao ${ }^{b, c *}$
${ }^{\text {a K Key Laboratory of Materials Physics of Ministry of Education, School of Physics and }}$ Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
${ }^{b}$ Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
${ }^{c}$ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Authors to whom correspondence should be addressed: yaoxy@nimte.ac.cn; hehao@zzu.edu.cn.

Figure S1. Direct current polarization curves of the $\mathrm{C}\left|\mathrm{a}-\mathrm{NbS}_{4.5}\right| \mathrm{C}, \mathrm{C} \mid \mathrm{a}-\mathrm{NbS}_{4.5} / 20 \%$ Super $\mathrm{P} \mid \mathrm{C}$ and $\mathrm{C} \mid \mathrm{a}-\mathrm{NbS}_{4.5} / 20 \%$ Super $\mathrm{P} @ \mathrm{Li}_{7} \mathrm{P}_{3} \mathrm{~S}_{11} \mid \mathrm{C}$.

Figure S2. SEM images of (a) NbS_{2}, (b) S_{8} and (c) Super P .

Figure S3. SEM-EDS analysis of $\mathrm{a}-\mathrm{NbS}_{4.5}$. The inset is the element composition results.

Figure S4. HRTEM image and SAED pattern of (a) $a-\mathrm{NbS}_{4.5}$, (b) $\mathrm{a}-\mathrm{NbS}_{4.5} / 20 \%$ Super P sample.

Figure S5. (a) Rate performances of $\mathrm{a}-\mathrm{NbS}_{4.5}$, $\mathrm{a}-\mathrm{NbS}_{4.5} / 20 \%$ Super P and $\mathrm{a}-\mathrm{NbS}_{4.5} / 20 \%$ Super $\mathrm{P} @ 15 \% \mathrm{Li}_{7} \mathrm{P}_{3} \mathrm{~S}_{11}$ cathodes at the current densities from 0.1 to $2 \mathrm{Ag}^{-1}$. (b) Ragone plots. The plots were derived from the discharge curves in Figure 4a-c.

Figure S6. (a) CV curves of the cells using a-NbS $4.5 / 20 \%$ Super $\mathrm{P} @ 15 \% \mathrm{Li}_{7} \mathrm{P}_{3} \mathrm{~S}_{11}$ cathode at different scan rates for the second cycle. (b) The fitted lines and \log (peak current) vs. \log (scan rate) plots at main oxidation and reduction peaks.

Table S1. The fitted results of batteries after the 1st and 40th cycle.

sample	after 1st cycle	after 40th cycle		
	$R_{\mathrm{e}}(\Omega)$	$R_{\mathrm{ct}}(\Omega)$	$R_{\mathrm{e}}(\Omega)$	$R_{\mathrm{ct}}(\Omega)$
$\mathrm{a}-\mathrm{NbS}_{4.5}$	72.0	60.1	578.5	236.4
$\mathrm{a}-\mathrm{NbS}_{4.5} / 20 \% \operatorname{Super~P~}^{2}$	69.5	$/$	410.8	101.6
$\mathrm{a}-\mathrm{NbS}_{4.5} / 20 \% \operatorname{Super} \mathrm{P} @ 15 \% \mathrm{Li}_{7} \mathrm{P}_{3} \mathrm{~S}_{11}$	62.5	$/$	155.9	11.5

