Supporting Information

Distance Produces Beauty? Regulating the Distance of Fe Atomic

Pairs to Enhance Electrocatalytic CO₂ Reduction

Xiaofei Wei,^a Huakai Xu,^a Chuanhai Jiang,^a Zhifei Wang,^a Yuguo Ouyang,^a Chunyu

Lu,^a Yuan Jing,^a Shiwei Yao,^a Xiaoqing Lu,^a Fangna Dai^{a,*}

^a School of Materials Science and Engineering, China University of Petroleum,

Qingdao, Shandong 266580, P. R. China

*Corresponding author: Fangna Dai

E-mail address: fndai@upc.edu.cn

Figure S1. Partial density of states (PDOS) between N 2p-obital and Fe 3d-orbital of four catalysts, respectively.

Figure S2. Forming energy (E_{f} , eV) and dissolution potential (U_{diss} , V) of four catalysts.

Figure S3. Partial density of states (PDOS) between CO_2 2p-obital and Fe 3d-orbital of four catalysts, respectively.

Figure S4. Summary of the limiting potential (U_L) of the products for CO, HCOOH, CH₃OH, and CH₄ on four FeN₄-Dx (x = 1, 2, 3, 4) structures.

Structure	D	(Å)	Bader (e)	Μ (μ _B)	3	d
S	Fe-Fe	Fe-N	Fe	Fe	up	down
FeN ₄ -D1	2.39	1.87	-1.27	3.24	-1.75	-0.78
FeN ₄ -D2	4.14	1.91	-1.29	3.73	-1.89	-0.19
FeN ₄ -D3	6.53	1.88	-1.25	4.07	-2.00	-0.20
FeN ₄ -D4	8.62	1.89	-1.25	4.00	-2.01	-0.20

Table S1. The bond length (D, Å), Bader charge transfer (|e|), magnetic moments (M, μ_B), and d-band center (ϵ_d) of four FeN₄-Dx (x = 1, 2, 3, 4) structures.

E-N D-			Bade	r (e)	E (N)	St
Feln ₄ -Dx	C-Fe (A)	∠ 0-C-0 (°)	Fe	CO ₂	L _{ads} (EV)	Structures
FeN ₄ -D1	2.02	132.99	-1.13	0.78	-0.25	->->->->
FeN ₄ -D2	2.11	137.75	-1.15	0.66	-0.22	•••
FeN ₄ -D3	2.05	136.54	-1.16	0.70	-0.21	0-03-03300 ⁻ 00-00-
FeN ₄ -D4	2.05	137.50	-1.11	0.68	-0.10	••••••••••••••

Table S2. The C-Fe bond length, O-C-O bond angle, Bader charge transfer, adsorption

energy (E_{ads}, eV) and corresponding adsorption structure of CO_2 adsorbed on four

FeN₄-Dx structures.

Reaction steps	FeN ₄ -D1	FeN ₄ -D2	FeN ₄ -D3	FeN ₄ -D4
$* + CO_2 \rightarrow *CO_2$	0.18	0.22	0.22	0.33
$^{*}\mathrm{CO}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{COOH}$	0.31	-0.24	-0.03	-0.10
$*CO_2 + H^+ + e^- \rightarrow *HCOO$	0.39	-0.34	-0.09	-0.13
$*COOH + H^+ + e^- \rightarrow *HCOOH$	-0.09	0.41	0.14	0.16
$^{*}\text{HCOO} + \text{H}^{+} + \text{e}^{-} \rightarrow ^{*}\text{HCOOH}$	-0.17	0.31	0.20	0.20
*HCOOH \rightarrow * + HCOOH	-0.10	0.10	-0.03	-0.10
$*COOH + H^+ + e^- \rightarrow *CO + H_2O$	-0.15	-0.66	-0.80	-0.75
$*CO \rightarrow *+CO$	0.31	1.32	1.26	1.17
$*CO + H^+ + e^- \rightarrow *CHO$	0.02	0.66	0.73	0.70
$*CO + H^+ + e^- \rightarrow *COH$	1.79	1.96	1.84	2.22
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	0.53	0.50		
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.72	0.33	0.27	0.44
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.06	-0.53		
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.53	-0.40		
$*\mathrm{CHOH} + \mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow *\mathrm{CH_{2}OH}$	-0.74	-0.23	-0.27	-0.42
$*CHOH + H^+ + e^- \rightarrow *CH + H_2O$	1.71	1.34	1.31	1.27
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	-0.27	-0.06	-0.13	-0.14
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	-0.75	0.07		
$*CH_{3}OH \rightarrow *+CH_{3}OH$	-0.18	-0.13	-0.09	-0.15
$^{*}\mathrm{CH_{3}OH} + \mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow ^{*}\mathrm{CH_{3}} + \mathrm{H_{2}O}$	-0.44	-0.79	-0.62	-0.64
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$	0.22	0.34	0.30	0.32
$*{\rm COH} + {\rm H}^{\scriptscriptstyle +} + {\rm e}^{\scriptscriptstyle -} \rightarrow *{\rm CHOH}$	-1.05	-0.97	-0.83	-1.08
$^{*}\mathrm{CH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}$	-2.21	-1.23	-1.29	-1.37
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-0.94	-1.19	-1.05	-1.10
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{4}$	-0.72	-0.35	-0.46	-0.50
$^{*}\mathrm{CH}_{4} \rightarrow ^{*} + \mathrm{CH}_{4}$	-0.21	-0.19	-0.20	-0.20

Table S3. The reaction free energy of forming different intermediates on FeN₄-Dx (x =

1, 2, 3, 4) catalysts.

Reaction steps	FeN₄-D1
${*CO + *CO} \rightarrow *COCO$	1.53
$*CO + *CHO \rightarrow *COCHO$	0.17
$*COCHO + H^+ + e^- \rightarrow *COCHOH$	-0.17
$*COCHOH + H^+ + e^- \rightarrow *COCH + H_2O$	0.33
*COCHOH + H^+ + $e^ \rightarrow$ *CHOCHOH	0.08
*COCHOH + H ⁺ + $e^- \rightarrow$ *COHCHOH	0.74
*CHOCHOH + H ⁺ + $e^- \rightarrow$ *CHOCH + H ₂ O	0.34
$*CHOCHOH + H^+ + e^- \rightarrow *CH_2OCHOH$	0.90
*CHOCH + H ⁺ + $e^- \rightarrow$ *CHOHCH	-0.56
*CHOHCH + H ⁺ + $e^- \rightarrow$ *CH ₂ OHCH	0.54
*CHOCH + H ⁺ + $e^- \rightarrow$ *CHOCH ₂	-1.21
$*CHOCH + H^+ + e^- \rightarrow *CH_2OCH$	0.94
$^{*}CHOCH_{2} + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}$	1.21
*CHOCH ₂ + H ⁺ + $e^- \rightarrow$ *CHOHCH ₂	0.06
*CHOHCH + H ⁺ + $e^- \rightarrow$ *CHOHCH ₂	-0.59
*CHOHCH ₂ + H ⁺ + e ⁻ \rightarrow *CH ₂ OHCH ₂	-0.15
$*CH_2OHCH_2 + H^+ + e^- \rightarrow *CH_2OHCH_3$	-0.60
$*CH_2OHCH_3 \rightarrow * + C_2H_5OH$	-0.16
*CHOHCH ₂ + H ⁺ + $e^- \rightarrow$ *CH ₂ CH ₂ +H ₂ O	-0.34
*CHOHCH ₂ + H ⁺ + e ⁻ \rightarrow *CHCH ₂ + H ₂ O	-0.09
*CHCH ₂ + H ⁺ + $e^- \rightarrow$ *CH ₂ CH ₂	-0.40
$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	-0.26

Table S4. The reaction free energy (ΔG , eV) of CO₂RR to C₂ products (C₂H₅OH and C₂H₄) on FeN₄-D1 catalysts.

Catalysts PLS ΔG Ref. *CHOCHOH + H⁺ + $e^- \rightarrow$ *CHOCH + H₂O FeN₄-D1 0.34 This work 1 FeS(001)-V₈₁ $*CH_2COH + H^+ + e^- \rightarrow *CH_2CHOH$ 0.86 2 FeFe-grafiN₆ $*CO + *COH \rightarrow *HOCCO$ 0.68 3 Fe/GDY $*\text{HCOOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{HCO} + \text{H}_2\text{O}$ 0.43 $*COCO + H^+ + e^- \rightarrow *COCHO$ 4 Fe@B-C₂N 0.45 5 Fe₂@6N-V₄(b) $^{*}C_{2}H_{5}OH \rightarrow ^{*}+C_{2}H_{5}OH$ 0.59 6 $*CO + H^+ + e^- \rightarrow *CHO$ $Cu-C_3N_4$ 0.75 7 T_d -Cu₄@g-C₃N₄ $*CO + H^+ + e^- \rightarrow *CHO$ 0.68 8 Cu₂–CuN₃ $*OHCH_3 + *OCHO \rightarrow *CH_3 + *OCHO$ 0.50 9 $^{*}C_{2}H_{5}OH \rightarrow ^{*}+C_{2}H_{5}OH$ 0.46 B@Cu(111) 10 $Cu@VO_2$ $*CO + *CO \rightarrow *COCO$ 0.94

Table S5. Comparison of FeN₄-D1 structure with some reported catalysts on the PLS free energy of C_2H_5OH .

References

- T. G. Senthamaraikannan and D.-H. Lim, CO₂ Reduction to C₁ and C₂ Compounds on Sulfur-Deficient Mackinawite (FeS): A Density Functional Theory Study, *J. Phys. Chem. C*, 2022, **126**, 7012-7021.
- S. Chen, H. Yuan, S. I. Morozov, L. Ge, L. Li, L. Xu and W. A. Goddard, 3rd, Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO₂ Reduction Electrocatalysis for the Two-Metal Case, *J. Phys. Chem. Lett.*, 2020, **11**, 2541-2549.
- X. Liu, Z. Wang, Y. Tian and J. Zhao, Graphdiyne-Supported Single Iron Atom: A Promising Electrocatalyst for Carbon Dioxide Electroreduction into Methane and Ethanol, *J. Phys. Chem. C*, 2020, **124**, 3722-3730.
- M. He, W. An, Y. Wang, Y. Men and S. Liu, Hybrid Metal-Boron Diatomic Site Embedded in C₂N Monolayer Promotes C-C Coupling in CO₂ Electroreduction, *Small*, 2021, 17, 2104445.
- Y. Zhao, S. Zhou and J. Zhao, Selective C-C Coupling by Spatially Confined Dimeric Metal Centers, *iScience*, 2020, 23, 101051.
- Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec and S. Z. Qiao, Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO₂ Reduction to Hydrocarbon/Alcohol, *J. Am. Chem. Soc.*, 2017, **139**, 18093-18100.
- X. Bai, Q. Li, L. Shi, X. Niu, C. Ling and J. Wang, Hybrid Cu⁰ and Cu^{x+} as Atomic Interfaces Promote High-Selectivity Conversion of CO₂ to C₂H₅OH at Low Potential, *Small*, 2020, 16, e1901981.

- X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou, H. Shang, X. Ni, Z. Peng, F. Yang, W. Chen, Z. Qi, D. Wang and Y. Wang, Complementary Operando Spectroscopy identification of insitu generated metastable charge-asymmetry Cu₂-CuN₃ clusters for CO₂ reduction to ethanol, *Nat. Commun.*, 2022, 13, 1322.
- J.-S. Wang, G.-C. Zhao, Y.-Q. Qiu and C.-G. Liu, Strong Boron–Carbon Bonding Interaction Drives CO₂ Reduction to Ethanol over the Boron-Doped Cu(111) Surface: An Insight from the First-Principles Calculations, *J. Phys. Chem. C*, 2020, **125**, 572-582.
- Q. Yang, X. Liu, W. Peng, Y. Zhao, Z. Liu, M. Peng, Y.-R. Lu, T.-S. Chan, X. Xu and Y. Tan, Vanadium Oxide Integrated on Hierarchically Nanoporous Copper for Efficient Electroreduction of CO₂ to Ethanol, *J. Mater. Chem. A*, 2021, 9, 3044-3051.

Appendix

The optimized FeN₄-Dx (x = 1,2,3,4) structure details are as follows:

FeN₄-D1

14.7600002288999992	0.000000000000000000	0.00000000000000000
0.000000000000000000	12.7825002669999996	0.0000000000000000000000000000000000000
0.000000000000000000	0.00000000000000000	15.000000000000000000
C Fe N		

- 62 2 6

0.9999691942685673	0.0001181289924969	0.2000016865734286
0.1676260649673678	0.9996337271595026	0.2000033873985990
0.0836918866129236	0.1662678930816068	0.2000030167266955
0.2510905955387521	0.1681389205504702	0.2000033393546143
0.9999689509478171	0.1109583867338834	0.2000020734675048
0.1676335259339077	0.1114697828660389	0.2000032657679603
0.0832771031743409	0.2773930624463795	0.2000046208551101
0.2503910211938119	0.2803931639869638	0.2000005973402271
0.3342922986134588	0.9991684668763469	0.2000047063061227
0.4999668727329192	0.9987749546999547	0.2000029832761616
0.4167819911949604	0.1703188045458850	0.2000006569372834
0.5831515272027431	0.1703175211185745	0.1999998725820482

0.3343028541347725	0.1119297737697558	0.2000046302461357
0.4999656210809059	0.1123975295867094	0.2000023943087046
0.4159233364131807	0.2836058561127648	0.1999890960816003
0.5840038406565617	0.2836026083797669	0.1999852277644329
0.6656423132493139	0.9991656732048780	0.2000052362031321
0.8323098481538420	0.9996275391860147	0.2000038602294809
0.7488462704204283	0.1681321564589741	0.2000036055649881
0.9162437783615969	0.1662632480065873	0.2000029218120224
0.6656324444038036	0.1119295905676780	0.2000060168009284
0.8323021471917760	0.1114619857568512	0.2000042684007516
0.7495417350980821	0.2803849867427785	0.2000006935722949
0.9166523093629000	0.2773866455125667	0.2000054744351425
0.9999655695782890	0.3328718929773198	0.2000057123935541
0.1661137324735714	0.3334500850272173	0.2000029889814390
0.0824882266768287	0.5001428715815790	0.2000064133716846
0.2476839881238508	0.4997167483406727	0.1999952037351846
0.9999652032996810	0.4439757683421940	0.2000071972057960
0.1653800584927473	0.4444674584024230	0.2000034031399504
0.0824839083665861	0.6109434945972854	0.2000063002535623
0.2476818869506211	0.6113827946760658	0.1999946384011138
0.3324801955716533	0.3406619309370865	0.1999922074933811
0.4999629549996729	0.3408795355598171	0.1999762487183658

0.6674494924677419	0.3406554838983997	0.1999887410199478
0.8338171327814785	0.3334403353366527	0.2000033656140863
0.7522415872674412	0.4997081203992878	0.1999950975937532
0.9174395010548878	0.5001398277292065	0.2000070337941624
0.8345425041834897	0.4444628274763759	0.2000037540687870
0.7522453117815562	0.6113773506246994	0.1999949951930831
0.9174389844162490	0.6109442218593362	0.2000068812013233
0.9999635495891074	0.6670917292396207	0.2000069720173696
0.1653771823275700	0.6666221850028408	0.2000027894209659
0.0832805750579048	0.8336831039329112	0.2000041457154410
0.2503935116673468	0.8306883322200469	0.2000010062285425
0.9999658774171333	0.7782062583692503	0.2000051075530101
0.1661167397372667	0.7776254715486226	0.2000031161765974
0.0836843716414023	0.9448131622101775	0.2000026011255139
0.2510779370057176	0.9429461720006672	0.2000047081531205
0.4159365528678954	0.8275250802119173	0.1999915259577599
0.5839941002019086	0.8275219587479453	0.1999925685325475
0.3324922402404860	0.7704631113699975	0.1999911840501821
0.4999650267552410	0.7702333667498910	0.1999819749977881
0.4167893227253807	0.9408224866039537	0.2000014123183022
0.5831448617209417	0.9408200406840704	0.2000014091765444
0.8345499691178673	0.6666229724767911	0.2000039216622295

0.7495362894426522	0.8306846776382210	0.2000022508096039
0.9166517949204069	0.8336831860125957	0.2000040032894354
0.6674382880803399	0.7704586189432218	0.1999926698434000
0.8338125496031252	0.7776252535237294	0.2000034601924963
0.7488558556871762	0.9429412873936281	0.2000050878486554
0.9162526275241436	0.9448115167248050	0.2000025975634945
0.4250655330034838	0.5555354401814631	0.1999524766894367
0.5748622544931832	0.5555341794065840	0.1999465982087755
0.3300432726888013	0.4498309884614043	0.1999849997752078
0.4999606134190436	0.4454841402652170	0.1999499201280326
0.6698849722222627	0.4498226108468020	0.1999806677549257
0.3300520626766934	0.6612698593817553	0.1999856798539675
0.4999647019342855	0.6656152551535738	0.1999591665017647
0.6698796048361743	0.6612663505892135	0.1999823742703064

FeN₄-D2

1.00000000000000

14.7600002288999992	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	12.78250026699999996	0.000000000000000000
0.000000000000000000	0.000000000000000000	15.000000000000000000
C N Fe		

60 8 2

0.9999143340217067	0.9998824265429965	0.1999984718145782
0.1667401902786719	-0.0000391711339011	0.1999984192584628
0.0831229680459166	0.1662102736601286	0.2000022214041760
0.2498587718636338	0.1661384889271379	0.1999960023460410
0.9999166784401843	0.1110465892052459	0.2000001834423570
0.1667373764838420	0.1109630853011690	0.2000014909301301
0.0826958317479554	0.2771077095174129	0.2000057048009993
0.2484060574626832	0.2779186930897641	0.1999972915816095
0.3342664581112028	0.9988511568524836	0.2000059643230754
0.4999116877649326	0.9964529901493678	0.2000207172988775
0.4162695202715837	0.1724426213243626	0.1999595764349226
0.5835567951075163	0.1724391002299814	0.1999628134448768
0.3342844403442676	0.1120180391516096	0.1999861431111287
0.4999148751779104	0.1144143411223855	0.1999748840985935

0.6655579240383781	0.9988579537761785	0.2000070148485553
0.8330829186656116	-0.0000337584469979	0.1999985773693865
0.7499707241874474	0.1661444841013013	0.1999970529595722
0.9167028267263847	0.1662086176777270	0.2000021403941413
0.6655465671198776	0.1120253220685439	0.1999872400620457
0.8330860667810512	0.1109690189344164	0.2000015481124790
0.7514146285261433	0.2779223356611665	0.1999990777140789
0.9171281824622212	0.2771032053357664	0.2000056308969567
0.9999060351347754	0.3328287727719096	0.2000044534464457
0.1650379700667130	0.3330259829065382	0.2000089033532115
0.0820910941978143	0.4999620364859593	0.2000029148763552
0.2460403166615676	0.4998624456559772	0.2000016989789059
0.9999106318096650	0.4440109863813293	0.2000035771146998
0.1642279204092840	0.4436563203116639	0.2000076181383457
0.0821030009340158	0.6109727367942750	0.1999962393797098
0.2460611016708938	0.6110576483293958	0.1999958721543659
0.3301408850361163	0.3337139013409249	0.1999698682603240
0.3286277210640314	0.4464946523043123	0.1999825540290451
0.6696728550538832	0.3337138350295699	0.1999739660914739
0.8347797980739921	0.3330250227695409	0.2000091985088392
0.7537798133821318	0.4998632042261862	0.2000022012097915
0.9177159241841444	0.4999630828334810	0.2000032655209056

S18

0.6711859635628835	0.4464977082944278	0.1999856618768261
0.8355920529202931	0.4436537601231323	0.2000078463050971
0.7537558161134468	0.6110558288851983	0.1999971877598284
0.9177100878404373	0.6109739459426050	0.1999971499851740
0.9999026264927015	0.6669125862129184	0.1999957651498828
0.1642283348135735	0.6672588726551560	0.1999908017114221
0.0826822105866357	0.8338225033833054	0.1999941096907614
0.2483783611058960	0.8329786449259149	0.1999998839011939
0.9999063674455521	0.7781127029599504	0.1999954738536912
0.1650207137574147	0.7778813218631875	0.1999901701143213
0.0831167522607550	0.9447224477533394	0.1999971035576969
0.2498425239826224	0.9447433614809421	0.2000018876613107
0.3286379680211231	0.6644051320276714	0.2000138682043367
0.3301286719291507	0.7771730662899219	0.2000261601198713
0.4162405292377011	0.9384401499162891	0.2000357589437213
0.5835826310034872	0.9384469916646047	0.2000365843974055
0.6711835685915114	0.6644042645984329	0.2000155746074011
0.8355882441609166	0.6672657739347437	0.1999924372237621
0.7514405468060461	0.8329790689464196	0.2000006383663891
0.9171316145714880	0.8338262960225703	0.1999944903340372
0.6696910089831025	0.7771763657605851	0.2000264039046503
0.8347957089089337	0.7778893839153513	0.1999912470998138

0.7499842610327982	0.9447493773501062	0.2000023691532485
0.9167084543726639	0.9447202674634095	0.1999972447027615
0.4126129852911944	0.2826648208052845	0.1999271466297174
0.5872046880393784	0.2826662623423603	0.1999359540383522
0.4095316784793656	0.5004522298972788	0.1999695465639345
0.5902796624140749	0.5004601925241773	0.1999731271384421
0.4095423783380537	0.6104324058586545	0.2000325425328266
0.5902754258207644	0.6104365103859488	0.2000350305281004
0.4125944877372789	0.8282130224405098	0.2000690891284120
0.5872271949821457	0.8282158659724099	0.2000723413555440
0.4999072719899508	0.3944784189603389	0.1998944517461003
0.4999082730985298	0.7163761552535144	0.2001246500044813

FeN₄-D3

1.00000000000000

14.7600002288999992	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	12.78250026699999996	0.0000000000000000000000000000000000000
0.00000000000000000	0.000000000000000000	15.000000000000000000
C N Fe		

60 8 2

0.0005584661401304	0.9990077564367473	0.200000026796618
0.1679503141230895	0.9984596208254422	0.200000034089700
0.0847532255143585	0.1674630599848306	0.1999999998717556
0.2498063294257555	0.1702813173606820	0.2000000044832253
0.0012636740936983	0.1108266650114085	0.200000014373087
0.1680137225949477	0.1114590459667001	0.2000000041865065
0.0845379436592082	0.2794126142783324	0.2000000058791317
0.2493366230846292	0.2845247655941094	0.200000005977078
0.3326546301277642	0.9982814095468443	0.200000056273145
0.5000035184713569	0.0005807737033401	0.1999999981806080
0.4147462268205568	0.1675772400782392	0.1999999948395511
0.5815611099629312	0.1729112513246168	0.200000048337213
0.3320527846645327	0.1115101442017072	0.2000000058167923
0.4991752059481918	0.1135624254965905	0.1999999964216670

0.4138741723245705	0.2800376777870690	0.1999999853311381
0.6664136407446769	0.0041463205046752	0.200000086414112
0.8324365536739742	0.0012552183139712	0.200000009868440
0.7512299844852349	0.1735118778511866	0.200000083661645
0.9180637938509937	0.1660621245260696	0.200000073217267
0.6663468123583201	0.1181462761049825	0.2000000105826089
0.8332666149637887	0.1130674914376864	0.200000018051916
0.9191359817422070	0.2771239091597893	0.2000000149734082
0.0011077167960026	0.3333100781898229	0.2000000098268244
0.1655707206110232	0.3403762282948186	0.200000083175873
0.0801019711270030	0.5000877608998839	0.2000000060991821
0.9994089159983650	0.4439550073775272	0.2000000068162291
0.0793257247604571	0.6113845127611374	0.1999999958490511
0.3326326689748608	0.3405669067382485	0.1999999976254745
0.4966881347854657	0.3325165374885282	0.1999999944982784
0.4181195661954654	0.4992479005347736	0.200000093784551
0.4985287310510770	0.4447164063612718	0.1999999975736838
0.4199672211893277	0.6114358537116994	0.2000000110676320
0.5840365375293352	0.6033963797250690	0.200000084135996
0.8373505667755072	0.3325791657830894	0.2000000112036260
0.9172799290634994	0.4999779052540130	0.1999999987728602
0.8365773287570570	0.4438586004182249	0.200000009196354

0.7511041636586506	0.6035699722705246	0.1999999993283851
0.9155729040950191	0.6106244805194367	0.1999999975555453
0.9975405495030704	0.6668102052210823	0.1999999917665256
0.0833770091381537	0.8308729337132601	0.200000035996550
0.2503183962887102	0.8257888839386299	0.1999999958538846
0.9985983301508334	0.7778610291507783	0.1999999982560719
0.1654332693500524	0.7704449367198345	0.1999999976001022
0.0842122836513331	0.9426726821815861	0.2000000049847999
0.2502557211682820	0.9397850839930830	0.1999999975943169
0.5027822603737889	0.6639126727632949	0.2000000201870481
0.4174967063639268	0.8303672941429806	0.200000088965975
0.5846120424065629	0.8324306054359991	0.200000014545252
0.3351002138174154	0.7710230368055579	0.200000011698938
0.5019248110029646	0.7763638625994075	0.2000000113865847
0.4166838671164789	0.9433460429800327	0.200000064714115
0.5840199290746092	0.9456596409741568	0.200000001300893
0.6673397804554989	0.6594273449584741	0.2000000055067817
0.8321432408005482	0.6645219139213855	0.200000005888849
0.7486522618312960	0.8324994784614301	0.200000027283686
0.9154009125752843	0.8330799233510414	0.2000000041829092
0.6668653927058857	0.7736678250101842	0.200000019081025
0.8319089991493193	0.7764673359522355	0.200000065751575

0.7487115914842459	0.9454841770633764	0.200000028225856
0.9160976873864196	0.9449122631690153	0.200000027172105
0.5779793573114708	0.2816145321965446	0.1999999996745256
0.7553165349993556	0.2815040699036938	0.2000000181329567
0.1619116765186040	0.4488021968717613	0.200000063937551
0.5801095773398269	0.4953081287630923	0.200000035971263
0.3365439520669565	0.4486513080727600	0.200000017473105
0.7547573875158811	0.4951395636554505	0.200000012352548
0.1613493634005092	0.6624644779830715	0.1999999873624593
0.3386824269523777	0.6623389977180761	0.200000069085568
0.2495008477937978	0.5559469248473372	0.1999999894460509
0.6671494241635052	0.3880078546582301	0.200000096020015

FeN₄-D4

1.00000000000000

0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	76000022889999992	14.76000
0.000000000000000000	12.7825002669999996	000000000000000000000000000000000000000	0.00000
15.000000000000000000000000000000000000	0.000000000000000000	000000000000000000000000000000000000000	0.00000
		N Fe	C N

60 8 2

0.0017478672426712 -	0.0044254052078998	0.1999943070379772
0.1682439008032684	0.9933579607503722	0.1999837155066599
0.0862388146031142	0.1653097299915733	0.1999756718751800
0.2519654786081856	0.1675439241315440	0.1999969347542085
0.0028740879758617	0.1081889591836500	0.1999877791990821
0.1692057017626158	0.1077390203611882	0.1999825556455028
0.0845050664508460	0.2783593488978854	0.2000109064831305
0.2505445328392018	0.2805946753072140	0.2000046853237487
0.3357564275858118	0.0018046279321057	0.2000606390394288
0.5034266686091285	0.0034198267818670	0.2000531791852581
0.4226620287026186	0.1719850329681244	0.1999740873165200
0.3373547087176881	0.1144126080870747	0.2000138911076536
0.5072184588226667	0.1153619993164899	0.2000264569907332
0.4205692096897317	0.2850633677521676	0.1998587750838704

0.6693869206510502 -	-0.0027290486628364	0.2000412381980970
0.8351307029634495	0.9965418838107555	0.2000323920364815
0.7537447566808798	0.1613037418290323	0.2000691078685994
0.9193772637371243	0.1633829797828696	0.2000217737864803
0.6700120254774843	0.1064206009614777	0.2000787146045410
0.8362432714517390	0.1071319460297117	0.2000520033750478
0.9160852334697774	0.2751008882310468	0.2000154555701152
-0.0004961836916728	0.3326996598634789	0.2000181290413611
0.1670446708225836	0.3381425634112831	0.2000337662252230
0.0795760940343051	0.5058695253180270	0.2000399100420070
0.2497672087778529	0.5092081186920892	0.2000822868322263
-0.0028660089453453	0.4447508640131116	0.2000197677609831
0.1652844527170274	0.4523006690441554	0.2000657904420207
0.3341384544201191	0.3377391569988141	0.1999450774449195
0.8291299331401952	0.3262171519329118	0.1999646050603829
0.7424567581219563	0.4960164694202647	0.1996811516992681
0.9108892744317671	0.4953927077588997	0.1999511688582274
0.8265386575379291	0.4384600105657819	0.1998612429055769
0.7462871413576533	0.6078389592976023	0.1997162956131548
0.9117599855961720	0.6070825994012131	0.1999657110232651
-0.0060490797717771	0.6634291721578879	0.2000083088612301
-0.0047788075298179	0.7754189980401192	0.2000105061913005

S26

0.0832982905930547 0.9360363558319016 0.1999706136379415 0.2532256665234834 0.9403295265250654 0.2000492777336286 0.4196818398717702 0.8369419210875269 0.2000769570995185 0.5844064125586788 0.8345130074063111 0.1999089096697354 0.3376721744241926 0.7813264085124750 0.2001377344456845 0.5014683632147774 0.7802703394965130 0.1999184031853410 0.4198673371438070 0.9484775112540210 0.2000808729544145 0.5852371744109349 0.9446068144431663 0.2000118399395812 0.8295158581984511 0.6631782474276812 0.1998988458794612 0.7498819067453144 0.8313162934604205 0.1999369277993645 0.9141014533475643 0.8302338695121519 0.2000288106702896 0.6666349634417760 0.7774384050684336 0.1998247066789873 0.8310884819339437 0.7740465539806025 0.1999724279615524 0.7519148394119699 0.9416298610304877 0.2000116257889694 0.9173611102404761 0.9413827699424122 0.2000299926081299 0.3317560350274991 0.4498839744667115 0.1999545831177626 0.4969908722092618 0.4495713746201769 0.1996008304641279 0.3365589892877083 0.6697120224495186 0.2001101413828281 0.5001294136120797 0.6703617284372344 0.1997753325008690 0.6654585295538340 0.6670265745230483 0.1996737108966322 0.5818481129134065 0.6138868339547451 0.1995744756265772 0.5807848941226589 0.5048349906801037 0.1994912603577301

0.4178205133613645	0.6152371336863650	0.1998875215113897
0.4155426946755050	0.5044166356218874	0.1997945067728041
0.5909914077872644	0.1641018597332228	0.2000256240683951
0.7499330910263370	0.2686759625194404	0.1999886745798917
0.0764036180947642	0.6141867211561723	0.2000126644787983
0.2545715207127355	0.6180325419009578	0.2001522071887814
0.5001850058755682	0.3420911646082985	0.1996803993919979
0.0776168680021867	0.8271890035149423	0.1999752468124643
0.2557463994448390	0.8316199057813451	0.2001061401015266
0.6592259041148469	0.4470827786104115	0.1995375959541032
0.6250980318695764	0.3054142780066529	0.1997621074414484
0.1661164283845021	0.7229312845985668	0.2000312403097702