Supporting Information

Structural reconstruction of BiPbO₂Br nanosheets for electrochemical CO₂ reduction to formate

Gaoming Sun,^{‡ab} Chong Zou,^{‡c} Wen Sun,^{ab} Ying Fang,^{ab} Shuijian He,^d Yana Liu,^{ab} Jiguang Zhang,^{ab} Yunfeng Zhu^{*ab} and Jun Wang^{*ab}

^aCollege of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

E-mail: jun22@njtech.edu.cn; yfzhu@njtech.edu.cn

^bJiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China.

^cSchool of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

^dCo-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Fig. S1. (a) ¹H NMR spectra of formate with different concentration. (b) The corresponding calibration curve.

Fig. S2. XRD pattern of BiOBr NS.

Fig. S3. (a) SEM, (b) TEM and (c-d) HRTEM images of BiOBr NS.

Fig. S4. XRD pattern of PbO_xBr_y.

Fig. S5. (a) SEM, (b) TEM and (c-d) HRTEM images of PbO_xBr_y .

Fig. S6. XPS survey spectrum of BiPbO₂Br.

Fig. S7. The controlled electrolysis at different potentials over (a) BiOBr, (b) BiPbO₂Br and (c) PbO_xBr_y in CO₂-saturated 0.5 M NaHCO₃.

Fig. S8. GC FID (a) and TCD (b) spectra for determining CO and H_2 in gaseous products over BiPbO₂Br at -0.9 V. Notably, the standard gas and pure CO₂ were also measured for comparison.

 $\label{eq:Fig.S9.Faradaic efficiency of CO and H_2 over BiOBr, $BiPbO_2Br$ and PbO_xBr_y at different potentials.}$

Fig. S10. ¹H NMR spectra of CO₂ or Ar-saturated 0.5 M NaHCO₃ solution after 1 h electrolysis over BiPbO₂Br.

Fig. S11. (a-d) CV curves at different scan rates for BiPbO₂Br with varied electrolysis time, (e) the according charging current density plotted against scan rates, and (f) EIS spectra of BiPbO₂Br before and after the long-term chronoamperometric test.

It is found that the C_{dl} of BiPbO₂Br electrode is gradually decreased with the preceding of chronoamperometric test, implying the decrease of ECSA. However, the EIS spectra reveal that the contact resistance of the electrode is obviously reduced, suggesting the increased conductivity after the test, which should be contributed to the increased current density during the chronoamperometric test.

Catalyst	Electrolyte	FE (formate %)	E (V vs PHF)	j formate	Ref.
BiPbO ₂ Br	0.5 M NaHCO ₃	96.6	_0.9	26	This
		02.1	-0.9	40	work
D: 0.4 200	0.5 M KUCO	93.1	-1.0	40	
BI-OAm-300	0.5 M KHCO3	97.1	-0.9	31.1	
SOR Bi@C NPs	0.5 M KHCO ₃	95	-0.99	10.5	2
BiOCl	0.5 M KHCO3	92	-0.9	28.63	3
Pd- Pb3(CO3)2(OH)2	0.1 M KHCO ₃	96.5	-1.2	13	4
3D Bi-ene-A/CM	0.5 M KHCO3	96.02	-0.88	21.21	5
Bi-Cu	0.5 M KHCO3	94.37	-0.91	27.85	6
Bi-PNS	0.5 M KHCO3	95	-1.0	45	7
Bi/CB	0.5 M KHCO3	94	-0.9	16.7	8
Pits-Bi	0.1 M KHCO3	94.9	-1.0	17.2	9
BiOC1-derived	0.5 M KHCO3	92	-0.9	10.5	10
Bi/Bi ₂ O ₃ -CP	0.5 M KHCO3	90.3	-0.87	32.4	11
BBNS	0.5 M NaHCO ₃	>92	-0.89	11.5	12
Bi-Sn	0.1 M KHCO3	93.9	-1.0	9.3	13
f-Bi ₂ O ₃	0.1 M KHCO3	87	-1.2	20.9	14
BiPb	0.5 M NaHCO3	91.86	-0.96	15.56	15

 Table S1. Comparison of CO2RR-to-formate performance of recently reported Bi or Pb-based
 electrocatalysts in H-type cell.

Fig. S12. CV curves of (a) BiOBr, (b) BiPbO₂Br and (c) PbO_xBr_y with different scan rates.

Fig. S13. XRD patterns of BiOBr and PbO_xBr_y after electroreduction.

Fig. S14. Br 3d XPS spectra of BiPbO₂Br before and after electroreduction.

Reference

- H. Zheng, G. Wu, G. Gao and X. Wang, The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO₂ reduction to formate, *Chem. Eng. J.*, 2021, **421**, 129606.
- S. Liu, Y. Fan, Y. Wang, S. Jin, M. Hou, W. Zeng, K. Li, T. Jiang, L. Qin, Z. Yan, Z. Tao, X. Zheng, C. Shen, Z. Liu, T. Ahmad, K. Zhang and W. Chen, Surface-Oxygen-Rich Bi@C Nanoparticles for High-Efficiency Electroreduction of CO₂ to Formate, *Nano Lett.*, 2022, 22, 9107-9114.
- Y. Zhou, P. Yan, J. Jia, S. Zhang, X. Zheng, L. Zhang, B. Zhang, J. Chen, W. Hao, G. Chen, Q. Xu and B. Han, Supercritical CO₂-constructed intralayer [Bi₂O₂]²⁺ structural distortion for enhanced CO₂ electroreduction, *J. Mater. Chem. A*, 2020, **8**, 13320-13327.
- W. Huang, Y. Wang, J. Liu, Y. Wang, D. Liu, J. Dong, N. Jia, L. Yang, C. Liu, Z. Liu, B. Liu and Q. Yan, Efficient and Selective CO₂ Reduction to Formate on Pd-Doped Pb₃(CO₃)₂(OH)₂: Dynamic Catalyst Reconstruction and Accelerated CO₂ Protonation, *Small*, 2022, 18, e2107885.
- Y. C. He, D. D. Ma, S. H. Zhou, M. Zhang, J. J. Tian and Q. L. Zhu, Integrated 3D Open Network of Interconnected Bismuthene Arrays for Energy-Efficient and Electrosynthesis-Assisted Electrocatalytic CO₂ Reduction, *Small*, 2022, 18, e2105246.
- L. Peng, Y. Wang, Y. Wang, N. Xu, W. Lou, P. Liu, D. Cai, H. Huang and J. Qiao, Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO₂ to formate with alkaline anion-exchange membrane beyond KHCO₃ electrolyte, *Appl. Catal., B*, 2021, **288**, 120003.
- Z. L. Yu, S. Q. Wu, L. W. Chen, Y. C. Hao, X. Su, Z. Zhu, W. Y. Gao, B. Wang and A. X. Yin, Promoting the Electrocatalytic Reduction of CO₂ on Ultrathin Porous Bismuth Nanosheets with Tunable Surface-Active Sites and Local pH Environments, *ACS Appl. Mater. Interfaces*, 2022, 14, 10648-10655.
- S. Q. Wu, Y. C. Hao, L. W. Chen, J. Li, Z. L. Yu, Z. Zhu, D. Liu, X. Su, L. Hu, H. Z. Huang and A. X. Yin, Modulating the electrocatalytic CO₂ reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation, *Nanoscale*, 2021, 13, 20091-20097.
- Y. Yuan, Q. Wang, Y. Qiao, X. Chen, Z. Yang, W. Lai, T. Chen, G. Zhang, H. Duan, M. Liu and H. Huang, In Situ Structural Reconstruction to Generate the Active Sites for CO₂ Electroreduction on Bismuth Ultrathin Nanosheets, *Adv. Energy Mater.*, 2022, 12, 2200970.
- P. Liu, H. Liu, S. Zhang, J. Wang and C. Wang, Effects of thicknesses and sizes of BiO_X nanoplates precursors on derived Bi nanosheets for efficient CO₂ electroreduction, *J. CO₂ Util.*, 2021, **51**, 101643.
- D. Wu, G. Huo, W. Chen, X.-Z. Fu and J.-L. Luo, Boosting formate production at high current density from CO₂ electroreduction on defect-rich hierarchical mesoporous Bi/Bi₂O₃ junction nanosheets, *Appl. Catal.*, *B*, 2020, **271**, 118957.
- J. Zhu, J. Fan, T. Cheng, M. Cao, Z. Sun, R. Zhou, L. Huang, D. Wang, Y. Li and Y. Wu, Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO₂ reduction, *Nano Energy*, 2020, **75**, 104939.
- 13. Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin and T. Ma, Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic

CO₂ Reduction to HCOOH, Angew. Chem., Int. Ed., 2021, 60, 12554-12559.

- T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal and A. Tricoli, Nanostructured β-Bi₂O₃
 Fractals on Carbon Fibers for Highly Selective CO₂ Electroreduction to Formate, *Adv. Funct. Mater.*, 2019, **30**, 1906478.
- X. Zhang, X. Jiao, Y. Mao, X. Zhu, H. Kang, Z. Song, X. Yan, X. Yan, C. Han, L. Cui, K. Zhang and J. Qiao, A BiPb bimetallic electrode for highly selective CO₂ conversion to formate, *Sep. Purif. Technol.*, 2022, **300**, 121848.