Supporting Information

Substituent dependent deep-blue pyrene-based chemosensor for trace nitroanilines sensing

Hua-Long Li,[‡]^a Jing-Yi Cao,[‡]^a Ze-Dong Yu,^a Guang Yang,^a Zeng-Min Xue,^a Chuan-Zeng Wang^{*a,b} Wen-Xuan Zhao,^a Yi Zhao,^{*a} Carl Redshaw,^c and Takehiko Yamato,^{*b}

^{a.} School of Chemistry and Chemical Engineering, Shandong University of

Technology, Zibo 255049, P. R. China

^{b.} Department of Applied Chemistry, Faculty of Science and Engineering, Saga

University Honjo-machi 1, Saga 840-8502 Japan

^{c.} Chemistry, School of Natural Sciences, The University of Hull, Cottingham Road,

Hull, Yorkshire HU6 7RX, UK

heme S1. Synthetic procedure for the substituted pyrene derivatives.

Figure S1. ¹H NMR spectrum of TriBrPy and TetraBrPy (400 MHz, 293 K, CDCl₃).

Figure S2. ¹H NMR spectrum of TriPhPy (400 MHz, 293 K, CDCl₃).

Figure S3. ¹³C NMR spectrum of TriPhPy (100 MHz, 293 K, CDCl₃).

Figure S4. ¹H NMR spectrum of TetraPhPy (400 MHz, 293 K, CDCl₃).

Figure S5. ¹H NMR spectrum of TetraPhPy (400 MHz, 293 K, CDCl₃).

Figure S6. Solvatochromism effect of UV-vis absorbance spectra of TriPhPy at a concentration of 10 μ M at 25 °C.

Figure S7. Solvatochromism effect of UV-vis absorbance spectra of TetraPhPy at a concentration of 10 μ M at 25 °C.

Figure S8. Solvatochromism effect in the emission spectra (A) and the CIE 1931 chromaticity diagram (B) for **TriPhPy** in cyclohexane, 1,4-dioxane, THF, DCM and DMF, respectively.

Figure S9. Solvatochromism effect of emission spectra (A) and CIE 1931 chromaticity diagram (B) for TetraPhPy in cyclohexane, 1,4-dioxane, THF, DCM and DMF, respectively.

Figure S10. Fluorescence quenching spectra of TriPhPy with incremental concentration addition of *o*-NA.

Figure S11. Fluorescence quenching spectra of TriPhPy with incremental concentration addition of *m*-NA.

Figure S12. Fluorescence quenching spectra of TetraPhPy with incremental concentration addition of *o*-NA.

Figure S13. Fluorescence quenching spectra of TetraPhPy with incremental concentration addition of *m*-NA.

Figure S14. Fluorescence quenching spectra of TetraPhPy with incremental concentration addition of *p*-NA.

Figure S15. Histogram of fluorescence quenching of TetraPhPy with NA.

Standard deviation and detection limit calculations

To calculate the standard deviation and detection limit of this detection method, fine particles of **TriPhPy/TetraPhPy** with fine particles was made into a solution $(1 \times 10^{-5} \text{ M}, \text{ DCM})$. Then, a nitroaniline (*o*-NA, *p*-NA, *m*-NA) solution (10 mM) was added to the respective solution and the fluorescent intensities were recorded. The standard deviation (σ) was calculated from five blank tests of **TriPhPy/TetraPhPy** solution (0.0162, 0.1321 respectively) and the limit of detection (LOD) was calculated via the formula: $3\sigma/K$ (*K*: the slope of the linear region). The LODs of **TriPhPy** was calculated to be 1.25×10^{-8} M, 1.36×10^{-8} M for *o*-NA, *m*-NA, the LODs of **TetraPhPy** was calculated to be 5.62×10^{-8} M, 6.01×10^{-8} M, 6.48×10^{-8} M for *o*-NA, *p*-NA, *m*-NA, respectively.