Ultrahigh conductivity and non-trivial band structure in van der Waals Nb dichalcogenides with Ge intercalation

Xue Han,^a Zhaolong Liu, ^{b,c} Zhongnan Guo, ^{*a} Xiaojing Feng, ^a Yan Gao, ^a

Shifeng Jin, ^{b,d} Wenxia Yuan^{*a}

 ^a Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
 ^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
 ^c University of Chinese Academy of Sciences, Beijing 100049, China
 ^d School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

*Authors to whom correspondence should be addressed: <u>guozhongn@ustb.edu.cn</u> and <u>wxyuanwz@163.com</u>

Figure S1. The SEM images, EDS and elemental mapping results of (a) $Ge_{0.33}NbS_2$ and (b) $Ge_{0.26}NbSe_2$.

Figure S2. Magnetic field dependence of the Hall resistivity of (a) $Ge_{0.33}NbS_2$ and (b) $Ge_{0.26}NbSe_2$ single crystals.

Figure S3. The structure models of (a) $Ge_{0.33}NbS_2$ and (b) $Ge_{0.26}NbSe_2$ used for calculation. Two different types of superlattice were used to simulate the different Ge configurations in $Ge_{0.33}NbS_2$ and $Ge_{0.26}NbSe_2$.

Figure S4. (a) The partial DOS for $Ge_{0.33}NbS_2$ with/without SOC; (b) The partial DOS for

Ge_{0.26}NbSe₂ with/without SOC.

Figure S5. (a) The corresponding height value of the white dotted line in Figure 6a; (b) The corresponding height value of the white dotted line in Figure 6b.

Empirical formula	Ge _{0.33} NbS ₂
Formula weight	181.23
Crystal system	hexagonal
Space group	P6 ₃ /mcm
Unit cell dimensions	a=5.756(2) Å, α=90 °
	b=5.756(2) Å, β=90 °
	c=13.474(4) Å, γ=120 °
Volume, Z	386.6 (2) Å ³ , 6
Density (calculated)	4.671 g/cm ³
2θ range for data collection	6.05° to 56.68°
Index ranges	$-7 \le h \le 7, -6 \le k \le 7, -17 \le l \le 18$
Reflections collected	3097
Independent reflections	201 [$R_{int} = 0.0921, R_{sigma} = 0.0567$]
Data/restraints/parameters	201/0/13
Goodness-of-fit on F ²	1.340
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0584, wR_2 = 0.1084$
Final R indexes [all data]	$R_1 = 0.0615, wR_2 = 0.1137$
Largest diff. peak and hole	1.81/-7.08 e·Å ⁻³

Table S1. Crystallographic Data and Structure Refinement of $Ge_{0.33}NbS_2$.

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Ge_{0.33}NbS₂ estimated standard deviations in parentheses.

Label	x	У	ζ	Occupancy	$U_{ m eq}{}^*$
Nb(1)	0	0	2500	1.00	2(1)
Nb(2)	-3333.33	3333.33	2500	1.00	2(1)
S	-3356(2)	0	1335.2(10)	1.00	3(1)
Ge	0	0	0	1.00	7(1)

 $^{\ast}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Label	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
Nb(1)	2(1)	2(1)	2(1)	0	0	1(1)
Nb(2)	2(1)	2(1)	2(1)	0	0	1(1)
S	3(1)	3(1)	3(1)	0	0(1)	2(1)
Ge	6(1)	6(1)	10(1)	0	0	3(1)

Table S3. Anisotropic displacement parameters ($Å^{2} \times 10^{3}$) for Ge_{0.33}NbS₂ with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$.

Table S4. Crystallographic Data and Structure Refinement of $Ge_{0.26}NbSe_2$.

Empirical formula	Ge _{0.26} NbSe ₂
Formula weight	269.34
Crystal system	hexagonal
Space group	P6 ₃ /mmc
Unit cell dimensions	a=3.454(6) Å, α=90 °
	b=3.454(6) Å, β=90 °
	c=13.480(4) Å, γ=120 °
Volume, Z	139.93(7) Å ³ , 2
Density (calculated)	6.421 g/cm ³
2θ range for data collection	6.04° to 54.94°
Index ranges	$-4 \le h \le 2, -4 \le k \le 4, -17 \le l \le 16$
Reflections collected	1020
Independent reflections	85 [$R_{int} = 0.0575, R_{sigma} = 0.0273$]
Data/restraints/parameters	85/0/9
Goodness-of-fit on F ²	1.405
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0699, wR_2 = 0.1773$
Final R indexes [all data]	$R_1 = 0.0705, wR_2 = 0.1781$
Largest diff. peak and hole	2.19/-3.24 e·Å ⁻³

Label	x	У	Z	Occupancy	$U_{ m eq}^{*}$
Se	3333.33	6666.67	3738(4)	1.00	29(2)
Nb	0	10000	2500	1.00	28 (2)
Ge	0	10000	5000	0.26(3)	26(9)

Table S5. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²×10³) for Ge_{0.26}NbSe₂ estimated standard deviations in parentheses.

 $^{\ast}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S6. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Ge_{0.33}NbS₂ with estimated standard deviations in parentheses.

Label	<i>U</i> ₁₁	U_{22}	<i>U</i> ₃₃	<i>U</i> ₂₃	U_{13}	<i>U</i> ₁₂
Se	21(2)	21(2)	45(3)	0	0	10(1)
Nb	20(2)	20(2)	44(4)	0	0	10(1)
Ge	29(11)	29(11)	19(13)	0	0	15(5)

The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$.

Material	Conductivity (S·cm ⁻¹)
Ge _{0.33} NbS ₂	6.83×10^4
Ge _{0.26} NbSe ₂	5.48×10^{3}
NbS ₂	9.09×10^{3}
TaS ₂	8.33×10^{3}
VSe ₂	3.03×10^{3}
NbSe ₂	2.86×10^{3}
TaSe ₂	2.50×10^{3}
PtSe ₂	7.69×10^{3}
VTe ₂	5.88×10^{3}
NbTe ₂	3.85×10^{3}
TaTe ₂	2.78×10^{3}
WTe ₂	3.57×10^{2}
PtTe ₂	4.17×10^{4}
Bi*	8.00×10^{3}
Ag*	6.21×10^{5}
Au*	4.55×10^{5}
Pt*	9.60×10^4

Table S7. The conductivities of different materials at room temperature in Figure 3c.

*The conductivities of Bi, Ag, Au and Pt were taken from G. T. Meaden, Electrical resistance of

metals, Springer, 2013.