Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Universal synthesis of rare earth-doped FeP nanorod arrays for hydrogen evolution reaction

Minnan Chen,^a Zijing Lin,^a Yi Ren,^a Xuan Wang,^a Meng Li,^a Dongmei Sun,^{*a} Yawen Tang,^{*a} and Gengtao Fu^{*a}

^a Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

E-mail: sundongmei@njnu.edu.cn; tangyawen@njnu.edu.cn; gengtaofu@njnu.edu.cn

Experimental section

Reagents and chemicals

All the reagents were of analytical reagent grade and used without further purification. Iron (III) chloride hexahydrate (FeCl₃·6H₂O) was supplied by Macklin Biochemical Co. Ltd. (Shanghai, China). Samarium (III) chloride (SmCl₃) was brought from Aladdin Ltd. (Shanghai, China). Sodium sulfate (Na₂SO₄), and Glycine were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Commercial Ruthenium oxide (RuO₂) and 20% Pt/C were obtained from Johnson Matthey Corporation. All the water used in the experimental section was deionized.

Preparation of FeO(OH)@CC

The FeO(OH)@CC was prepared via a facile hydrothermal method. Briefly, 1.2 mmol (0.324 g) FeCl₃·6H₂O and 4 mmol (0.568 g) Na₂SO₄ were dissolved in 40 mL of deionized (DI) water and mixed uniformly by ultrasound to obtain a red clarification solution. Subsequently, the above mixture and a piece of nitric acid-treated carbon cloth ($2 \times 4 \text{ cm}^2$) were sealed in a Teflon-lined steel autoclave and heated at 120 °C for 8 h in an oven. After cooling down to room temperature, the as-fabricated FeO(OH)@CC was washed several times with ethanol and deionized water.

Preparation of Sm-FeP@CC and FeP@CC

For the synthesis of Sm-FeP@CC, a piece of FeO(OH)@CC was first exposed to the energetic Ar plasma at the power of 60 W for 3 min. Subsequently, the as-treated FeO(OH)@CC was immersed into 30 mL 0.003 mol L^{-1} SmCl₃ and 1 wt% glycine mixed water solution and then transferred into a Teflon-lined steel autoclave at 80°C for 60 min. Subsequently, the as-treated carbon cloth was dried at room temperature and finally annealed at 350 °C for 30 min in an Ar atmosphere to obtain Sm-FeP@CC. For comparison, the FeP@CC was also synthesized with a similar procedure without SmCl₃ and glycine solution.

Characterization

X-ray diffraction (XRD) was operated by a D/max-rC X-ray diffractometer (Cu Ka radiation, $\lambda = 1.5406$ Å). Scanning electron microscopy (SEM) images were captured by JEOL JSM7500F. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), high angle annular dark-field scanning TEM (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping/line scan were acquired through JEOL JEM-2100F with an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) was carried out on Thermo VG Scientific ESCALAB 250 spectrometer with an Al Ka light source. Electron spin resonance (ESR) spectra were recorded using Bruker A300-10 at 77 K.

Electrochemical measurements

All electrochemical measurements were tested on a CHI 760E electrochemical workstation by a typical three-electrode system in 1.0 M KOH solution at room temperature. The catalyst-modified carbon cloth with a geometric area of 1×1 cm² was employed as the working electrode, while a carbon rod and a saturated calomel electrode (SCE) were used as the auxiliary electrode and the reference electrode, respectively. The potential was operated to the reversible hydrogen electrode (RHE) by following the Nernst equation: $E_{RHE} = E_{SCE} + 0.0592 \times pH + 0.242$. The overpotential (η) was calculated according to the following formula: $\eta = E_{RHE} - 1.23$ V. The HER activity of catalysts was evaluated by the linear sweep voltammetry (LSV) with a scan rate of 5 mV s⁻¹ between -0.9 and -1.6 V *vs.* SCE. All data presented were corrected for iR loss. Faradaic Efficiency was calculated H₂. Theoretically, it will take 300 s to produce 1.52 ml hydrogen at 20 mA (the molar volume of gas is 24.5 L mol⁻¹ at 25 °C). The electrochemical double-layer capacitances (Cdl) were converted through a series of CV tests (scan rate: 2-10 mV s⁻¹). The ECSA of catalysts have been calculated via the following equation:

$$ECSA = \frac{C_{dl}}{40 \ \mu F \ cm^{-2} \ per \ cm^2}$$

The electrochemical impedance spectroscopy (EIS) was obtained over a scanning frequency range of 0.01 Hz to 100 kHz at -1.17 V.

Theoretical calculation

Spin-polarized density functional theory (DFT) calculations were investigated via Vienna ab initio Simulation Package (VASP).^{1, 2} The exchange-correlation term in the Hamiltonian operator is described by the generalized gradient approximation (GGA) method³ with the revised Perdew-Burke-Ernzerhof (RPBE) functional developed by Nørskov et al.⁴ The interaction between the ionic state and core electrons was described by the projector augmented wave (PAW) method.^{5, 6} The behavior of valence electrons was described by expanding the Kohn-Sham wavefunctions in the plane-wave basis set. Therefore, the energy cutoff for the plane-wave basis set was set to 500 eV. The convergence for the forces of each atom is lower than 0.03 eV/Å, while the electronic self-consistency is below 10^{-5} eV. The *k*-point sampling for the first Brillouin zone accepts the Monkhorst Pack method⁷ with the density of 5×5×1 for the slab model. The van deer Waals dispersion correction is DFT-D3 method provided by Grimme et al with Becke-Johnson damping function.⁸ To describe the strong on-site Coulombic interaction of 3d and 4f electrons, the Hubbard model was used according to Dudarev et al⁹, where the effective U values (Ueff) for Fe and Sm are 3 eV and 6 eV respectively. The computational hydrogen electrode (CHE) proposed by Nørskov et al¹⁰ was used to calculate the free energy of electrochemical hydrogen evolution progress. The correction for the free energy of *H follows G(*H) = E(*H) + 0.24eV according to Nørskov et al.11

Fig.s and Tables

Fig. S1 (a) XRD pattern of Sm-FeP and FeP without CC, (b) XRD patterns comparison of (211) facet: Sm-FeP and FeP without CC.

Fig. S2 XRD pattern of FeO(OH)@CC catalyst.

Fig. S3 EDS spectrum of Sm-FeP@CC.

Fig. S4 XPS survey spectrum of Sm-FeP@CC.

Fig. S5 Sm 3d XPS spectra comparison of Sm-FeP@CC and Sm₂O₃.

Fig. S6 SEM images of FeO(OH)@CC.

Fig. S7 SEM images of FeP@CC.

Fig. S8 Digital micrograph of a sealed assembly of drainage gas gathering system.

Fig. S9 I-t curve of FeP@CC.

Fig. S10 SEM images of Sm-FeP@CC after the stability test.

Fig. S11 (a) XPS survey spectrum of Sm-FeP@CC after the stability test; (b) Fe 2p XPS spectra comparison of the initial and recovered Sm-FeP@CC.

Fig. S12 CVs at different sweeping rates from 2 mV s⁻¹ to 10 mV s⁻¹ of (a) Sm-FeP@CC, (b) FeP@CC and (c) FeO(OH)@CC.

Fig. S13 PDOS of Fe-3d, P-3p and O-2p in FeP (011) + (*H + *OH).

Fig. S14 The optimized H₂O adsorption configuration at Sm-FeP surface.

Fig. S15 I-t curves of Sm-FeP@CC || RuO₂-based electrolyzer and FeP@CC || RuO₂-based electrolyzer.

Fig. S16 SEM images and element mapping profiles of (a) Yb-FeP@CC, (b) Eu-FeP@CC, (c) La-FeP@CC and (d) Er-FeP@CC.

Catalysts	η10	Tafel slope	Reference
	(mV)	(mV dec ⁻¹)	
Sm-FeP@CC	71	85.9	This work
Mn–FeP	173	95	ACS Sustainable Chem. Eng. 2019, 7, 12419.
N–FeP	226	84.8	Appl. Surf. Sci. 2020, 507 , 145096.
NiFe/NiCo ₂ O ₄ /NF	105	88	Adv. Funct. Mater. 2016, 26, 3515.
Fe-NiO/NF	183	105.5	Nano Energy. 2019, 66, 104118.
Fe-NC	347	128	Carbon. 2019, 146, 671.
(Ni, Fe)S2@MoS2	130	101.22	Appl Catal. B Environ. 2019, 247, 107.
Fe-Co ₂ P BNRs	156	90	J Energy Chem. 2021, 55 , 92.
Fe-Ni ₅ P ₄ /NiFeOH-350	197	94	Appl Catal. B Environ. 2021, 291, 119987.
Fe-N4 SAs/NPC	202	123	Angew. Chem. Int. Ed. 2018, 57, 8614.
Fe, Al-NiSe ₂ /rGO	288	103	Nanoscale. 2020, 12 , 13680.
Fe ₃ O ₄ -FeS/IF	~100	126.3	J Energy Chem. 2022, 68 , 96.
N-FeS ₂	126	124	J Energy Chem. 2021, 56 , 283.
Fe _{0.9} Co _{0.05} S _{1.05}	342	114	Chem Eng J. 2020, 402 , 125069.
δ-FeOOH/Ni ₃ S ₂ /NF	106	82.6	J. Mater. Chem. A. 2020, 8, 21199.
Fe-Ni@NC-CNTs	202	113.7	Angew. Chem. Int. Ed. 2018, 57, 8921.
FeP	218	146	ACS Catal. 2014, 4 , 4065.
FeCo ₂ O ₄ @FeCo ₂ S ₄ @PPy-12	98.2	89.6	Nano Energy. 2020, 72 , 104715.
CdFe-BDC	148	128.99	ACS Appl. Mater. Interfaces. 2022, 14, 46374.
FeS2@CC	195	128	ACS Appl. Nano Mater. 2019, 2, 3889.
Fe _{0.1} -NiS ₂ NA/Ti	156	108	Nano Res. 2016, 9, 3346.
NiFe LDH@NiCo2S4/NF	200	101.1	ACS Appl. Mater. Interfaces. 2017, 9, 15364.
NiFe LDH@NiCoP/NF	120	88.2	Adv. Funct. Mater. 2018, 28, 1706847.
FeP/NCNSs	409	92	ACS Appl. Mater. Interfaces. 2018, 6, 11587.
FeP/NF	166	97	Chem Sci. 2018, 9 , 85909.
FePNPs@NPC	386	136	Nanoscale. 2017, 9 , 3555.

Table S1. Comparison of HER activity of Sm-FeP@CC with other catalysts reported.

References

- 1. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 2. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 4. B. Hammer, L. B. Hansen and J. K. Nørskov, J Phys. Rev. B, 1999, 59, 7413.
- 5. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 6. P. E. Blöchl, Phy. Rev. B, 1994, 50, 17953-17979.
- 7. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
- 8. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 9. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B, 1998, 57, 1505-1509.
- 10. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- 11. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, **152**, J23.