Supporting Information

FeNi₃ nanoparticles for electrocatalytic synthesis of urea from

carbon dioxide and nitrate

Hou et al.

Figure S1. SEM images of (a) Fe/NC and (b) Ni/NC.

Figure S2. HRTEM images of FeNi/NC.

Figure S3. XRD patterns of Fe/NC.

Figure S4. XRD patterns of Ni/NC.

Figure S5. The optical photograph of the H-shaped cell with three-electrode.

Figure S6. LSV curves for (a) Fe/NC, and (b) Ni/NC in the Ar/CO₂-saturated 0.1 M KNO₃, the scan rate is 10 mV s⁻¹.

Figure S7. The electrochemical impendence spectra of the FeNi/NC, Fe/NC and NiNC.

Figure S8. The cyclic voltammograms of (a) FeNi/NC, (b) Ni/NC, and (c) Fe/NC at different scan rates from 50 to 100 mV s⁻¹ at the potential window of 0.14 - 0.22 V (vs RHE). (d) The corresponding capacitive current at 0.18 V vs scan rates.

Figure S9. (a-c) UV-vis absorption spectra of various NH_3 concentrations obtained from three repeated experiments. (d) Calibration curve used for estimating NH_3 concentration.

Figure S10. (a-c) UV-Vis absorption spectra of different NO_2^- concentrations obtained from three repeated experiments. (d) Calibration curve used for estimating NO_2^- concentration.

Figure S11. The UV-vis absorbance curve of FeNi/NC under the applied potential of - 0.9 V vs RHE with and without urease decomposition.

Figure S12. The ¹H NMR spectra of identification for electrochemical ammonia synthesis. The ¹H NMR spectra of ammonia derived from urea product generation through urease catalysis were obtained from a 0.1 M KNO₃ electrolyte after 1 h of electrolysis of FeNi₃/NC catalyst at -0.9 V vs RHE. The electrolyte was then concentrated at 60 °C, resulting in the acquisition of the spectra.

Figure S13. (a) The full ¹H NMR spectra. (b) Identification of electrochemical urea synthesis. The ¹H NMR spectra of urea were obtained from a 0.1 M KNO₃ electrolyte after 1 h of electrolysis of FeNi₃/NC catalyst at -0.9 V vs RHE. The electrolyte was then concentrated at 60 °C, resulting in the acquisition of the spectra.

Figure S14. All possible products distribution for FeNi/NC during electrocatalytic urea synthesis at various potentials.

Figure S15. The stability test of the FeNi/ NC at -0.9V vs RHE in CO2-saturated 0.1M KNO3. During the electrochemical synthesis of urea, and no significant decay was
observed30within30h.

Figure S16. The XRD patterns of FeNi/NC loaded on the carbon paper after 30h stability test.

Figure S17. The SEM image of FeNi/NC loaded on the carbon paper after 30 h stability test.

Figure S18. The UV vis absorbance spectra of the blank electrolyte and open circuit opential in CO₂-saturated 0.1 M KNO₃.

Figure S19. (a) In the absence of CO_2 , i.e. CO_2 -saturated 0.1 M KNO₃. (b) In the absence of NO_3^- , i.e. CO_2 -saturated 0.1 M KHCO₃. The absorbance of samples with and without urease was compared, and similar absorbance values were observed in both cases, indicating the absence of urea products.

Figure S20. The optical photograph of the in-situ Raman device for urea electrosynthesis analysis.

Figure S21. Added 10 g and 2 g of pure urea to the 100 mL 0.1 M KNO₃ electrolyte, resulting in urea concentrations of $10^6 \,\mu\text{g/ml}$ and $2 \times 10^5 \,\mu\text{g/ml}$, respectively.

Table S1. Comparison of the electrocatalytic urea production activity of FeNi/NC with previously reported urea electrosynthesis catalysts.

			Urea Yield		
Catalyst	Reactant	Electrolyte	$(\mu g h^{-1} m g_{cat}^{-1})$	FE	Cite
FeNi/NC	NO ₃ -+CO ₂	0.1 M KNO ₃	796.5	16.58%	This work
In(OH) ₃ -S	NO ₃ -+CO ₂	0.1 M KNO ₃	533.1	54.3%	Nat. Sustain.
					2021, 4, 868–
					Nat. Chem.
P ₂₅ /In/SnO ₂	NO ₃ -+CO ₂	0.1 M KNO ₃	NA	40%	2020, 12,
					717724.
Pd ₁ Cu ₁ /TiO ₂ 400	N ₂ +CO ₂	0.1 M KHCO ₂	201.8	8.9%	Nat. Chem.
		0.1 W KIE03	201.0	0.970	717724.
Bi/BiVO4	N ₂ +CO ₂	0.1 M KHCO ₃	354.9	12.6%	Angew.
					Chem.
					60,
					1091010918.
FLPs/InOOH100	N ₂ +CO ₂	0.1 м кнсо ₃	411.4	20.9%	Chem Catal.
					2022, 2(2), 309320.
BiFeO ₃ /BiVO ₄	N ₂ +CO ₂	0.1 M KHCO ₃			Chem Sci.
			296.7	17.2%	2021, 12,
		0.05 M			Nano Lett.
Te-Pd NCs	NO ₂ ⁻ +CO ₂	KNO ₂	NA	12.2%	2020,
					20, 8282-
		0.1.5.5			8289
Cu-N-C single atoms	NO ₃ ⁻ +CO ₂		1800	28%	Adv. Energy Mater. 2022.
		M KNO ₃	1800		12, 2201500.
F-doped carbon nanotubes	NO ₃ -+CO ₂	0.1 M KNO ₃	381.9	18%	Appl. Catal.
					B.
					2022, 316,
					121618

Fe(a)@C/Fe ₃ O ₄ - CNTs	NO ₃ -+CO ₂	0.1 m kno3	1341.3±112.6	16.5±6.1%	Angew. Chem. Int Ed
					Int. Ed.
V ₀ -InOOH	NO ₃ ⁻ +CO ₂	0.1 m kno ₃	592.5	51%	ACS Nano
					2022, 16 (5),
					8213-8222.
ZnO-V	NO ₂ ⁻⁺ CO ₂	0.2 м	5.52mmol·h ⁻¹	23.26%	Cell Rep.
		NaHCOa+0.1			Phys.
					Soi 2021 2
		M NaNO ₂			Sci. 2021, 2
					(3), 100378.
Cu-TiO ₂ -Vo	NO ₂ ⁻⁺ CO ₂	0.2 M	20.8□mol·h ⁻¹	43.1%	Nat. Chem.
		нксо ₃ +0.02			2020, 12 (8),
		M KNO2			717-724.
Ni ₃ (BO ₃) ₂ -150	N ₂ +CO ₂	0.1 м кнсо3	582.6	20.36%	Energy Environ. Sci. 2021, 14
					(12), 6605-
					0015
Vo-CeO ₂ -750	NO ₃ ⁻⁺ CO ₂	0.1 M	943.6	NA	I Am Chem
		HKCO ₃ +50			Soc
		mM KNO ₃			500.
B-FeNi-DASC	NO ₃ ⁻⁺ CO ₂	0.1M KHCO ₃	1213.2	17.8%	Nature
		+50 Mm			Communicatio
					ns
		KNO ₃			2022 12 522=
					2022,13,5337