An ultrafine iridium nanoparticle prepared without surfactant for

acidic oxygen evolution reaction

Anyang Chen,^{1#} Mengting Deng,^{1#} Zhiyi Lu,^{1,2} Yichao Lin,^{1,2*} Liang Chen,^{1,2*}

 Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China

[2] University of Chinese Academy of Sciences, Beijing 100049, P.R. China

These authors contribute equally

E-mail: yclin@nimte.ac.cn, chenliang@nimte.ac.cn

Fig. S2 High-resolution XPS spectra of (a) commercial IrO_2 and (b) IrO_2 -T: Ir 4f. (c) O1s of UF-Ir/IrO_x after OER.

Fig. S3 In situ Raman spectra of (a) IrO_2 -T/carbon paper and (b) commercial IrO_2 /carbon in 0.5 M H₂SO₄ (with H₂O).

Fig. S4 Bode plots of UF-Ir/IrO_x, commercial IrO₂ and IrO₂-T.

Fig. S5 Mass activity at different applied voltages of UF-Ir/IrO_x, commercial IrO₂ and IrO₂-T

Fig. S6 (a) CV curves of UF-Ir/IrO_x at different scan rates (1, 2, 5, 10 mV/s) from 0.841 to 0.941 V vs. RHE. (b) The difference ($\triangle j$) between capacitive currents as a function of scan rate to give the double-layer capacitance (C_{dl}) for UF-Ir/IrO_x. For comparison, CV curves of (c) IrO₂-T and (e) commercial IrO₂ at different scan rates (1, 2, 5, 10 mV/s) from 0.841 to 0.941 V vs. RHE are also measrued, and the corresponding Cdl values (d \cdot f) are also calculated.

Fig. S7 ECSA-normalized LSVs for UF-Ir/IrO $_x$ and commercial IrO₂.

Fig. S8 HR-TEM image of UF-Ir/IrO_x after durability test.

Fig. S9 Polarization curves of the PEM electrolysers using UF-Ir/IrO_x as anode and Pt/C as cathode at 25°C.

Fig. S10 Chronopotentiometry curve of the PEM electrolyzer using UF-Ir/IrO_x operated at 10 mA cm⁻².

Table S1. Content of organic elements in UF-Ir/IrO_x.

Table 51. Content of organic clements in OT-in/nO _x .			
Elements	С	Н	
Content	7.19%	2.26%	

Catalyst	$\eta @10 \text{ mA cm}^{-2}(mV)$	$j_m(@=1.53 \text{ V vs. RHE})$ (A g_{Ir}^{-1})	Ref
UF-Ir/IrO _x	299	132	This work
IrO ₂ NPs	370	30	J. Phys. Chem. Lett. 2012, 3, 399
$IrO_x/Lu_2Ir_2O_7$	301	78(@1.525 V _{RHE})	ACS Appl. Mater. Interfaces 2021, 13, 29654
IrO ₂ nanospheres	352	58(@1.51 V _{RHE})	ACS Appl. Nano Mater. 2022, 5, 3, 4062
IrO _x -Ir	-	8.1(@1.48 V _{RHE})	Angew. Chemie 2016, 128 (2), 752
H _x IrO ₃ nanosheet	277	120(@1.58 V _{RHE})	ACS Appl. Energy Mater. 2022, 5, 6, 6869
IrO ₂ nanoneedles	313	52(@1.55 V _{RHE})	Adv. Funct. Mater. 2018,28(4),7
Ir atomic cluster/IrO ₂ nanoneedles	308	62(@1.55 V _{RHE})	Journal of Power Sources 2022, 524, 7.
IrO ₂ NPs/TiO ₂	-	59	Appl. Mater. Today 2021, 24, 15.

Table S2. The OER activity of Ir/IrO_x reported in literatures.