Supporting Information

Copper-Exchanged SUZ-4 Zeolite Catalysts for Selective Catalytic Reduction of NO_x

Yang Bai,^a Dapeng Hao,^{a,c} Yingzhen Wei,^a Jinfeng Han,^a Dan Li,^a Mengyang Chen*^b and Jihong Yu*^{a,c}

^{*a*} State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

^b School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou,

318000, P. R. China.

^c International Center of Future Science, Jilin University, Changchun, 130012, P. R. China

Corresponding Authors

Email: mychen@tzc.edu.cn; jihong@jlu.edu.cn

Materials

All chemicals and materials used in this study were obtained through commercially available routes and used directly without any further treatment and purification. Tetraethylammonium hydroxide (TEAOH, 25% in water, Beijing Innochem Chemical Reagent Co., Ltd, Beijing, China), aluminite powder (Al, 99.5% Alfa Aesar Chemical Co., Ltd, Heysham, UK), potassium hydroxide (KOH 85wt%, Tianjin Guangfu Science and Technology Development Co., Ltd, Tianjin, China), Ludox® AS-40 colloidal silica (40 wt%, Sigma-Aldrich Co., Ltd, Los Angeles, USA), copper nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99.5 wt%, Tianjin Fuchen Chemical Reagent Co., Ltd, Tianjin, China), commercial Cu-SSZ-13 catalyst (AOS Catalysts Co., Ltd, Dalian, China).

Synthesis of SUZ-4

SUZ-4 zeolites with different silicon contents or different crystallization times were synthesized via a hydrothermal method as described as below. Typically, 0.586 g KOH and a certain amount of Al powder were dissolved in 6.356 g deionized water. Thereafter, 1.5316 g TEAOH was added. After stirring for 15 min, 3.180 g silica sol (AS-40) was mixed with the final solution, followed by stirring for 0.5 h. The final composition of the typical synthesis mixture was $X \text{ Al}_2\text{O}_3$: 21 SiO₂: 9 KOH: 2.6 TEAOH: 520 H₂O (X = 1.5, 1.3, 1.0, 0.7, 0.6, 0.5 and 0.42). The mixture was transferred into a 25 mL autoclave and the hydrothermal synthesis was then carried out at 150 °C under rotate condition of 60 rpm for different crystallization time (0–96 h). The obtained sample was centrifuged and washed several times with deionized (DI) water, then dried overnight at 80 °C, followed by calcination at 550 °C for 6 h.

Preparation and high temperature hydrothermal ageing of Cu-SUZ-4 catalysts

Cu-SUZ-4 catalysts were prepared via two-step ion-exchanged method. SUZ-4 zeolites were ion-exchanged twice with 1 M NH₄NO₃ at 80 °C to mostly remove K⁺ ions for getting NH₄-SUZ-4. Then, copper ions were introduced by ion exchanging NH₄-SUZ-4 with aqueous solution of 0.02-0.1 M Cu(NO₃)₂ at 80 °C for 1 h. Thereafter, the zeolite slurries were filtered, washed with DI water and dried at 80 °C

overnight. Subsequently, the samples were calcined in a muffle oven at 550 °C for 5 h. The obtained Cu-SUZ-4 catalysts with different contents of copper were denoted as Cu-SUZ-4-1, Cu-SUZ-4-2 and Cu-SUZ-4-3, respectively. To investigate the hydrothermal stability of the Cu-SUZ-4 catalysts, Cu-SUZ-4-1, Cu-SUZ-4-2 and Cu-SUZ-4-3 were hydrothermally aged in flowing air containing 10 vol.% H₂O at 600 °C for 16 h and denoted as Cu-SUZ-4-1-HTA, Cu-SUZ-4-2-HTA and Cu-SUZ-4-3-HTA, respectively.

Characterization

The crystallinity and phase purity of the samples were characterized by X-ray diffraction (XRD) using Cu K_{α} radiation ($\lambda = 1.5418$ Å) on a Rigaku D-Max 2550 diffractometer (Rigaku Co., Tokyo, Japan). The relative crystallinity was evaluated by comparing the sum of peak areas $(2\theta = 7.8^{\circ}, 11.79^{\circ}, 15.5^{\circ}, 19.38^{\circ}, 22.18^{\circ}, 22.51^{\circ}, 19.38^{\circ}, 19.38^{$ 25.03°, 25.56° and 28.45°). Scanning electron microscopy (SEM) images were obtained by a JEOL JSM-7800F scanning electron microscope (JEOL Co., Tokyo, Japan). Transmission electron microscopy (TEM) images were recorded on a Tecnai G2 S-Twin F20 (FEI Company, Oregon, USA). The chemical composition of the samples was analyzed by inductively coupled plasma (ICP) on a Perkin-Elmer Optima 3300 DV ICP instrument (PerkinElmer, Inc., Waltham, Massachusetts, USA). Nitrogen adsorption/desorption characterization of samples was performed at 77.35 K after degassing at 350 °C under vacuum using a Micromeritics 2020 analyzer (Micromeritis Instrument Co., Norcross, Georgia, USA). Ammonia temperatureprogrammed desorption (NH3-TPD) testing of samples was performed using a Micromeritics AutoChemII 2920 automated chemical adsorption analysis unit (Micromeritis Instrumen Co., Norcross, Georgia, USA) under helium flow using a thermal conductivity detector (TCD). The hydrogen temperature-programmed reduction (H₂-TPR) tests were performed on an AutoChemII 2920 analyzer (Micromeritics Instrument Co., Norcross, Georgia, USA). Samples were pretreated at 500°C for 1 h in an air atmosphere and then TPR tests were performed in 10% H_2 / Ar at a flow rate of 50 ml/min. X-ray photoelectron spectroscopy (XPS) spectra were tested using a Thermo ESCALAB 250 spectrometer (Thermo Scientific Co., New York, USA) under monochromatic Al K_{α} excitation. Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) of the samples in the 200-800 nm range were obtained on a λ Lambda 950 spectrometer (PerkinElmer, Massachusetts Co., USA) at room temperature. ²⁷Al NMR tests were performed on Bruker Avance Neo 600Mz WB spectrometer with BBO MAS probe operating at a magnetic field strength of 14.1 T (Bruker Co., Karlsruhe, Germany).

Catalytic test

SCR activity testing of the catalysts was conducted in a quartz reactor with a fixed bed inner diameter of 6 mm. 0.1 g of the 40–60 mesh catalyst was placed in the tube reactor. The test reaction conditions were as follows.

500 ppm NO, 500 ppm NH₃, 5% O₂, 5% H₂O, and N₂ were used as the balance gas. The total flow rate was 500 mL/min and the gaseous hourly space velocity (GHSV) was about 200,000 h⁻¹. The inlet and outlet gas compositions were monitored in real time by FTIR spectrometer (MKS, MultiGas 2030HS), the NO conversion was calculated as follows:

NO conversion =
$$\left(1 - \frac{\mathbb{Z}[NO]_{out} + [NO_2]_{out}}{[NO]_{in} + [NO_2]_{in}}\right) \times 100\%$$

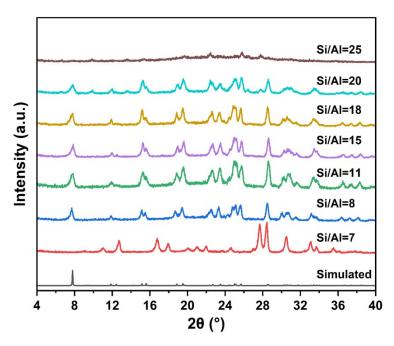


Fig. S1 XRD patterns of as-synthesized SUZ-4 zeolites with different Si/Al ratios.

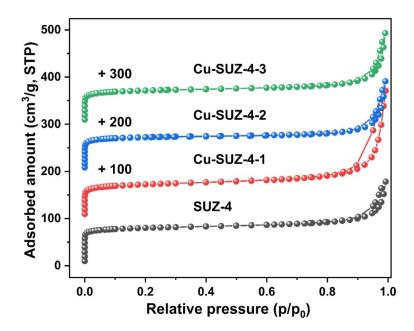


Fig. S2 Nitrogen adsorption-desorption isotherms of SUZ-4 and Cu-SUZ-4 samples.

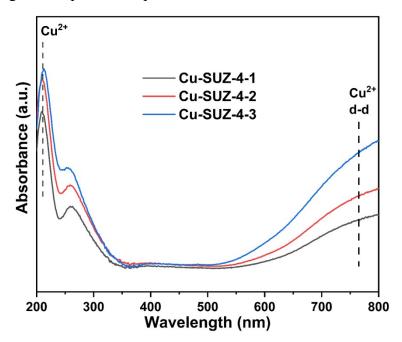


Fig. S3 UV-Vis DRS spectra of Cu-SUZ-4 samples.

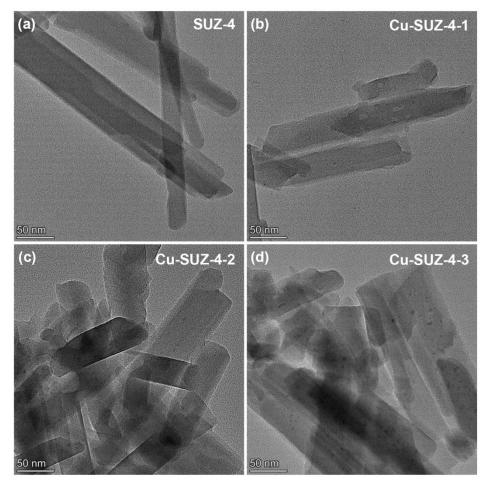


Fig. S4 TEM images of SUZ-4 and Cu-SUZ-4 zeolites.

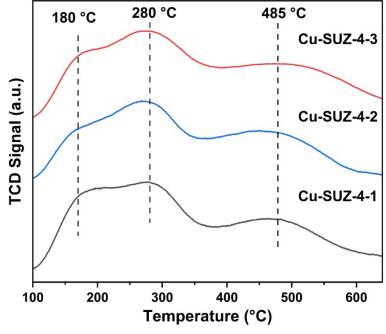


Fig. S5 NH₃-TPD profiles of Cu-SUZ-4 zeolites.

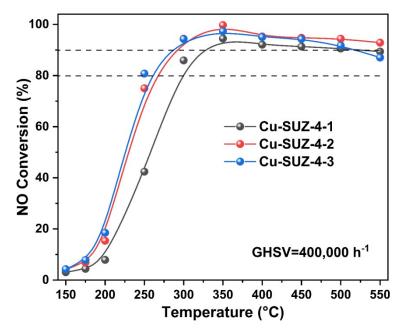


Fig. S6 NO conversion as a function of temperature on fresh Cu-SUZ-4 samples. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 5% O_2 , and 5% H₂O, balanced with N₂ at a GHSV of 400,000 h⁻¹.

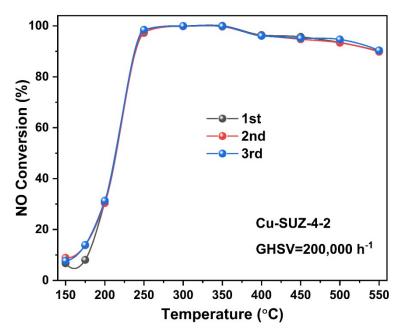


Fig. S7 Cycling stability of Cu-SUZ-4-2 zeolite. Reaction condition: 500 ppm NO, 500 ppm NH₃, 5% O_2 , and 5% H₂O, balanced with N₂ at a GHSV of 200,000 h⁻¹.

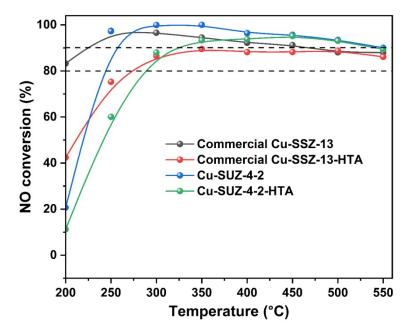


Fig. S8 NO conversion as a function of temperature on commercial Cu-SSZ-13 and Cu-SUZ-4 samples. Reaction condition: 500 ppm NO, 500 ppm NH₃, 5% O₂, and 5% H₂O, balanced with N₂ at a GHSV of 200,000 h^{-1} .

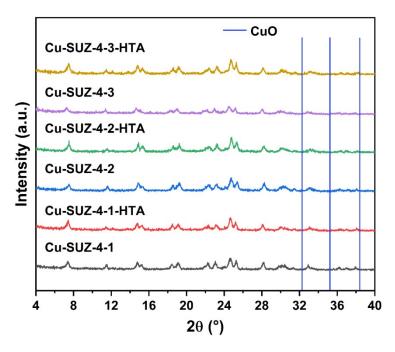


Fig. S9 XRD patterns of Cu-SUZ-4 zeolites before and after hydrothermal ageing. No CuO_x diffraction peaks as indicated by the blue lines are observed in each sample.

Tables

Table S1. The synthesized products influenced by the composition of the initial gel.

Sample	Si/Al (gel)	Si/Al (product)	Yield (%)
1	8	5.78	84
2	11	6.62	66
3	15	9.33	59
4	18	10.37	56
5	20	11.13	56

Table S2. Texture property and chemical composition of SUZ-4 and Cu-SUZ-4.

Samples	Si/Al ^a	Cu wt%ª	Cu/Al ^a	$S_{BET} (m^2/g)^b$	V _{micro} (cm ³ /g) ^c
SUZ-4	6.62	/	/	236	0.10
Cu-SUZ-4-1	6.46	1.43	0.12	219	0.08

Cu-SUZ-4-2	6.55	1.89	0.16	215	0.09
Cu-SUZ-4-3	6.35	2.21	0.19	214	0.09

^a Measured by inductively coupled plasma (ICP). ^b S_{BET} (total surface area) calculated by applying the BET equation in the 0–1.0 partial pressure range. ^c V_{micro} (micropore area) calculated using the *t*-plot method in the 0–1.0 partial pressure range.

Table S3. The comparison of catalytic performance between Cu-SUZ-4-2 catalyst and other similar zeolite catalysts for NH₃-SCR.

Sample	Zeolite topology	Si/Al	Cu wt%	Reaction conditions	T ₉₀ window	note
Cu-SUZ-4-2	SZR, 10-ring	6.15	1.89	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ , 5%	250,550 °C	this work
	channel system			H_2O , GHSV = 200,000 h ⁻¹ .	250-550 °C	
SZR	SZR, 10-ring	7.0	3.5	500 ppm NO, 450 ppm NH ₃ , 5% O ₂ , 2%	200.250.80	ref [24]
	channel system			CO_2 , 2.2% H ₂ O, GHSV = 30,000 h ⁻¹ .	200-250 °C	
MOZ	MOZ, 12-ring	3.6	2.6	500 ppm NO, 450 ppm NH ₃ , 5% O ₂ , 2%	175 200 00	ref [24]
	channel system			CO_2 , 2.2% H ₂ O, GHSV = 30,000 h ⁻¹ .	175-300 °C	
Cu-UZM-35	MSE , 12 and 10-	8.9	3.3	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ ,	200 525 00	ref [49]
	ring channel system			10% H ₂ O, GHSV = 100,000 h ⁻¹ .	200-525 °C	
Cu-FER	DED 10 '	10	2.8	500 ppm NO, 450 ppm NH ₃ , 10% O ₂ ,	275-475 °C	ref [50]
	FER, 10-ring			10% CO ₂ , 9% H ₂ O, GHSV = 200,000 h ⁻		
	channel system			1 <u>.</u>		
Cu-SSZ-52	SFW, 8-ring	4.7	2.4	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ , 5%		ref [51]
	channel system			H_2O , GHSV = 80,000 h ⁻¹ .	250-550 °C	
Cu-ZSM-5	MFI, 10-ring	14	3.0	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ ,	2 00 400 07	ref [49]
	channel system			10% H ₂ O, GHSV = 100,000 h ⁻¹ .	200-400 °C	